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Preface

This book is for aspiring academic economists and those in related fields. It
provides a rigorous treatment of some of the basic tools of economic modeling
and reasoning, bundled together with enough commentary and reflection so that
the reader can appreciate both the strengths and weaknesses of these tools. The
target audience (to whom this preface is directly addressed) consists of first-year
graduate students who are taking the standard ““theory sequence” and would like
to go more deeply into a selection of foundational issues, as well as students
who, having taken a first-year graduate course out of one of the standard
textbooks, would like a deeper dive. At the Stanford Graduate School of
Business, this book (more or less) has been the basis of the first-quarter, first-
year theory course for Ph.D. students, many of whom had taken a course out of
the admirable textbook by Mas-Colell, Whinston, and Green,1 and so for whom
this is an opportunity to review and extend their command of that material.

The objective of the book is captured by the word “command.” In my
experience, most students emerge ffom the standard first-year graduate theory
course with an understanding of the material that is good but not great. There is
little doubt that almost any student would benefit ffom a structured review of
this material using her original text. But, in my opinion, the standard textbooks
are not written with command or mastery of the material as their primary
objective. Because they are written to serve very broad audiences, breadth of
coverage is stressed over depth, and the authors sometimes omit technical
details, to avoid panicking less well-prepared readers. This book sacrifices
breadth for depth, avoids compromises about details (with a fow exceptions),
and tries to explain to the reader both why economic foundations are done the
way they are done and what are some of the limitations in how things are done.

Clearly, words like “command” and “mastery” must be taken with many
grains of salt. If your career objectives are to do research in any topic covered by
this book, the coverage here is inadequate to bring you to the level of
understanding you will require. Every chapter in this book could be expanded to
a book-length treatment on its own and, even then, important work on the topic
would be left out. In some cases, the book comes closer to the research frontier
than in others; perhaps not surprisingly, this is true on topics on which I myself



have made contributions. But in no case will you finish a chapter and be
prepared to tackle frontier research on the topic of that chapter.

Instead, when I use the terms “command” and “mastery,” I have in mind
something less ambitious. The foundations of economics are abstract and
mathematical (more about this momentarily), and as with any abstract,
mathematics-based  discipline, the more comfortable you are with the
foundations, the more likely it is that you will use those foundations well.
Errors in thought are much more likely the closer you are working to the
frontiers of your understanding. If you ever find yourself leaning on formal
mathematics that you don’t fully understand—if you find yourself thinking,
“I’m not sure why my model generates this result, but that’s what emerges”—
you are in grave danger You should understand the tools you use deeply
enough so that you aren’t fooled by them.

So that’s the objective here: to bring you(closer) to command level on a
relatively limited set of results, rather than to a nodding-acquaintance level with
a broader set. /f you understand a few things deeply, you will understand what it
means to acquire deep understanding, and then you can strive for a similar depth
of understanding on whatever (other) subject is of interest to you. My objective
is to tum that “if’ into a “when,” while covering a selection of important
microeconomic foundations.

Given this objective, can this book be used as a primary text in the first-
graduate-theory course? It is used that way for some of the students at the
Stanford GSB, so of course I think the answer is yes. But bear in mind the
book’s trade-off of breadth for depth. You should complement this book with
one that provides broader coverage. Indeed, since this material is part of the
foundation of what (I expect) you hope to be your career, you should in any case
invest in multiple perspectives. And, having given you that advice in general,
let me be a bit more specific: One of the many virtues of Mas-Colell, Whinston,
and Green (ibid.) is its enormous breadth. You ought to have a copy on your
shelf ifnot your desk.2

Volume I?

The title is Microeconomic Foundations I with subtitle Choice and Competitive
Markets, suggesting that further volumes are in preparation. “In preparation” is
an overstatement, as I write these words; “planned” is more accurate, and I plan



not only II: Strategic Interaction, Information, and Imperfect Competition, but
also [II: Institutions and Behavior. The volume you are holding deals with
economic foundations that existed in (nearly) finished form in the mid 1970s:
various models of individual choice; consumer and producer theory (for price-
taking or competitive consumers and firms); and (some) general equilibrium
theory. The intended second volume will cover material that entered the
mainstream of economic thought and practice ffom the mid 1970s to, say, 1990:
information economics and noncooperative game theory, in particular The third
piece is the most speculative: I have in mind a volume that will wrap together
developments in behavioral and institutional economics, with (perhaps)
transaction cost economics playing a central (but not the central) role. I am
trying to write this so that each volume would correspond to one ten-week
course, fitting the academic calendar of Stanford University. But that’s an
ambitious agenda; only time will tell ifthe second and third parts ever appear.

Mathematics in this book and in economics

The approach of this book is resolutely mathematical, because the foundations of
economics are resolutely mathematical. The level of mathematics required is not
extremely high; nearly everything takes place within finite-dimensional
Euclidean space. This is a deliberate choice: 1 have tried to hold the
mathematics employed to a level that most graduate students in economics will
have. With exceptions limited to a fw topics, to navigate this book you must
know the sort of mathematics covered in an undergraduate course on real
analysis, plus the first fw weeks of an undergraduate course in abstract algebra
(concerning binary relations).3 You will need to know more about some specific
mathematics, notably some convex analysis, some theory of correspondences,
and basics of constrained optimization. But most of the prerequisite
mathematics and all of these specific topics are reviewed in a series of appendices
at the end of the book.*

However, while high-level mathematics is not required, what is commonly
called “mathematical sophistication” is needed ffom start to finish. To make it
through the book, you need to be comfortable with mathematical abstraction and
with a definition—proposition—proof style of presentation. For students with a
strong background in mathematics, this will not be problematic and may even
be comforting; but for many students, this will be the real barrier to using this



book. I make no apologies for imposing this hurdle, because this, in my
opinion, is essential to command-level understanding of the mathematical tools
economists employ. I take proofs seriously, providing in most cases details or
at least an outline of the proof (I will sometimes skip steps or “leave the prooi
to the reader.” In every case where this happens, if you aren’t sure you see how
to fill in the gaps, then you really should take the time to figure out how to do
$0.)

Each chapter comes with some problems, offen including requests that you
provide proof§ that I leave to the reader You won’t achieve mastery of this
material ifyou don’t do them. So do them. Answers to problems with asterisks
—as in, *2.3, meaning Problem 3 in Chapter 2—are provided in a Student’s
Guide, which also gives summaries of each chapter. (This includes roughly half
the problems and, in most cases, problems where I ask you to fill in gaps left in
the text.) You can freely download chapter-by-chapter pieces of the Student’s
Guide at the URL http://www.microfundations.stanford.edu/student.’

Concerning mathematics and its role in economics: Some first-year graduate
students are utterly turned off by their first-year theory courses. They have come
to the study of economics to understand real-world phenomena and, perhaps, to
make a difrence in the real world, not to study mathematics. To those
students, my response is that if you plan to use economic techniques to
understand the real world and to see how to make a difference, your efectiveness
will depend in part on how well you understand those techniques; doing all this
math builds your understanding of the techniques. Aspiring novelists or
essayists may not see the value in learning to diagram sentences in fifh grade,
but if diagramming sentences in fifth grade improves the clarity of their
sentences—and 1 think it does—it is an important drill along the way to
becoming a novelist or essayist.

A different objection is that economics is a poorer discipline because of its
reliance on mathematical models. To be tractable—a word you are likely to
come to dislike—mathematical models must be relatively simple. So
mathematics forces all sorts of simplifications on economic models that make
the models less realistic. Because of this, some critics decry the study of
mathematical models in economics; they say it is indoctrination of the young
into a false and limiting faith.

Mathematical modeling is a mixed blessing for economics. Mathematical
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modeling provides real advantages in terms of precision of thought, in seeing
how assumptions are linked to conclusions, in generating and communicating
insights, in generalizing propositions, and in exporting knowledge from one
context to another In my opinion, these advantages are monumental, far
outweighing the costs. But the costs are not zero. Mathematical modeling
limits what can be tackled and what is considered legitimate inquiry. You may
decide, with experience, that the sorts of models in this book do not help you
understand the economic phenomena that you want to understand. Since, as I
write these lines, I don’t know what phenomena you want to understand, I can’t
say that you are surely wrong. And the position is defensible. But, based on my
own experiences, you are probably wrong. In any case, you are more likely to
succeed in convincing others and changing the way economists as a whole do
business if you have mastered the sort of mathematical models presented here,
which continue to be the foundation of modern economics.

Conventions

Within each chapter, propositions, definitions, lemmas, and so forth are
numbered sequentially. That is, if the first such item in Chapter 6 is a
definition, it is Definition 6.1; if the second such item in Chapter 6 is a
proposition, it is Proposition 6.2. Figures in a chapter are also numbered
sequentially, but in a different list. So the first figure in Chapter 6 is Figure 6.1.
Problems are numbered sequentially in still another list, and equations in still
another list.

The use of third-person singular pronouns in books such as this has become
an exercise in political correctness. I use she, her, and hers when only one actor
i s involved; the second actor ishe, him, and his. Keeping with PC
requirements, when there are two actors and a logical status ordering, she has
higher status, as in: she is the employer, he is the employee. With a tip of the
hat to Robert Aumann, in some places she is Alice and he is Bob.

Having paid my dues to PC as outlined in the previous paragraph, the dollar
is the standard currency in this book.

Acknowledgments
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2of course, many other excellent treatments of these topics can be found; I
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related mathematics, prepared by Kim Border Go to the URL
http://www.hss.caltech.edu/~kcb/Notes.shtml for a list of these notes.

3 So my earlier claim that I have tried to avoid compromises is, at best, a
relative statement. And sometimes the lure of going beyond finite-dimensional
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theoretic probability theory; to do some of the problems, you must know some
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the main expositional flow of the text. I also expect all readers to be reasonably
facile with spreadsheets; I employ MSExcel.

4 1 also provide a very detailed appendix on the methods of dynamic
programming, which I expect fw readers will have seen before. This material is
not used in this book except in the problems connected to Chapter 7, but these
are useful tools in modern macroeconomics and in topics to be discussed in the
second volume, and it seemed appropriate to cover these methods in connection
with Chapter 7, which concerns dynamic choice.

5 Solutions to the other problems are provided in an Instructors Manual ,
which also provides my recommendations about teaching out of this volume.
The Instructor’s Manual is also available via the internet, but access is limited:
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Chapter One




Choice, Preference, and Utility

Most people, when they think about microeconomics, think first about the
slogan supply equals demand and its picture, shown here in Figure 1.1, with a
rising supply function intersecting a falling demand function, determining an
equilibrium price and quantity.

price
supply
equilibrium
price [ _= !
! demand
: quantity
equilibrium
guantity

Figure 1.1. Supply equals demand

But before getting to this picture and the concept of an equilibrium, the
picture’s constituent pieces, the demand and supply functions, are needed.
Those functions arise from choices, choices by firms and by individual
consumers. Hence, microeconomic theory begins with choices. Indeed, the
theory not only begins with choices; it remains focused on them for a very long
time. Most of this volume concerns modeling the choices of consumers, with
some attention paid to the choices of profit-maximizing firms; only toward the
end do we seriously worry about equilibrium.



1.1. Consumer Choice: The Basics

The basic story of consumer choice is easily told: Begin with a set X of possible
objects that might be chosen and an individual, the consumer, who does the
choosing. The consumer faces limits on what she might choose, and so we
imagine some collection 4 of nonempty subsets of X from which the consumer
might choose. We let 4 denote a typical element of4; that is, 4 is a subset of
X. Then the choices of our consumer are denoted by c(4).

The story is that the consumer chooses one element of 4. Nonetheless, we
think of ¢(4) as a subset of 4, not a member or element of 4. This allows for the
possibility that the consumer is happy with any one of several elements of 4, in
which case c(4) lists all those elements. When she makes a definite choice of a
single element, say x, out of ——when she says, in effect, “I want x and nothing
else”—we write ¢(4) = {x}, or the singleton set consisting of the single element
x. But if she says, “I would be happy with either x or y,” then ¢(4) = {x, y}.

So far, no restrictions have been put on c¢(4). But some restrictions are
natural. For instance, c(4) S A4 seems obvious; we do not want to give the
consumer a choice out of 4 and have her choosing something that is not in 4.
You might think that we would insist on c(4) # [j; that is, the consumer

makes some choice. But we do not insist on this, at least, not yet. Therefore...
A model of consumer choice consists of some set X of possible objects
of choice, a collection A of nonempty subsets of X, and a choice

function ¢ whose domain is A and whose range is the set of subsets of
X, with the sole restriction that c(A) = A.

For instance, we can imagine a world of k commodities, where a commodity
bundle is a vector x = (x|, ..., x;) € Rk+, the positive orthant in k-dimensional
Euclidean space. (In this book, the positive orthant means all components
nonnegative, or RE +=1{x€ RF:x> 0}. The strict positive orthant, denoted by
RE 44, means elements of RF all of whose components are strictly positive.) If

say, k = 3 and the commodities are (in order) bread, cheese, and salami, the
bundle (3, 0, 0.5) means 3 units of bread, no cheese, and 0.5 units of salami, in
whatever units we are using. We can also imagine prices p; for the commodities,

so that p = (py, ..., p;) is the price vector; for convenience, we assume that all



prices are strictly positive, or p € RF ++. And we can imagine that the consumer
has some amount of incomey > 0 to spend. Then the consumer’s choice
problem is to choose some affordable bundle given these prices and her income;
that is, a typical set 4 is a budget set

(xER 1p-xsy}

A model of consumer choice in this context is then a choice function that says
which bundles the consumer would be willing to accept, as a function of the
prices of the goods p and her level of income y.

This is not much of a model, yet. Economic modeling begins with an
assumption that the choices made by the consumer in different situations are
somewhat coherent. Imagine, for instance, a customer at a caf® asking for a cup
of cofiee and a piece of pie. When told that they have apple and cherry pie, she
opts for apple. Then the waiter tells her that they also have peach pie. “If you
also have peach,” she responds, “I would like cherry pie, please.” We want to
(and will) assume that choice in different situations is coherent enough to
preclude this sort of behavior; we’ll formalize this next page, in Definition 1.1b.

This is one sort of coherence. A second is that the consumer’s choices are in
accord with utility maximization, for some utility function defined on X. That
is, there is a function u : X — R, such that for every 4,

cA)={reA:u(®) > u(y)forally € A}. (1.1)

A third sort of coherence involves a preference relation over X. A preference
relation expresses the consumer’s feelings between pairs of objects in X. We
denote the preference relation by — and imagine that for every pair x and y ffom

X, the consumer is willing to say that either x — y, meaning x is at least as

good as y, or not. For any pair x and y, then, one of four mutually exclusive
possibilities holds: (1) the consumer says that x — y and that y — x; (2) x =—

y but noty‘a_ X, (3)y‘~_ x but notx‘a_y, or (4) neltherx‘a_ y nory ‘s S

Then, with these preferences in hand, a consumer chooses from a set A prec1sely
those elements of 4 that are at least as good as everything in 4, or



cA)={re Az = yforally € A}. (1.2)

When you look at (most) models in microeconomics that have consumers,
consumers make choices, and the choice behavior of the consumer is modeled
by either (1) a utility function and the (implicit) assumption that choice ffom
any set A is governed by the rule (1.1) or (2) a preference relation and the
(implicit) assumption that choice ffom any set 4 is governed by the rule (1.2).
(Discrete choice models in econometrics have so-called random utility models,
in which choices are stochastic. And in some parts of behavioral economics, you
will find models of choice behavior that don’t quite fit either of these
frameworks. But most models have either utility-maximizing or preference-
maximizing consumers.)

The questions before us in this chapter are: How do these different ways of
modeling consumer choice compare? If we restrict attention to coherent choice,
does one imply the other(s)? Can they be made consistent?

The basic answer is that under certain coherence assumptions, the three
ways of modeling consumer choice are equivalent. We begin with the case of
finite X. (We worry a lot about infinite X later) To keep matters simple, we
make the following assumption for the remainder of this chapter (but see
Problems 1.15 and 1.16).

Assumption. A4 is the set of all nonempty subsets of X.

Two properties of choice functions and two properties of a preference relation
must be defined:

Definition 1.1.

a. A choice function c satisfies finite nonemptiness if c(A) is nonempty for
every finite A € A.

b. A choice function c satisfies choice coherence if, for every pair x and y
from X and A and B from A, if x, y € AN B, x € «(A), and y ¢ c(4), then
y & «(B).

c. A preference relation on X is complete if for every pair x and y from X,
either x '— y ory %= x (or both).



d. A preference relation on X is transitive if x *— y and y — z implies that x

b Z.

Some comments about these definitions may be helpful: Concerning a, if X is
finite, finite nonemptiness of ¢ means that ¢(4) is nonempty for all subsets of X.
Later in the chapter, the restriction to finite 4 will have a role to play. Choice
coherence is the formalization intended to preclude the apple, cherry, and peach
pie vignette: If apple is the (sole) choice out of {apple, cherry}, then cherry
cannot be chosen from {apple, cherry, peach}. An equivalent (contrapositive)
form for b is: For every pair x and y from X and A and B from A4, if x, y € A N

B, x € «(4), andy € (B), theny € «(4) and x € c(B),l

Proposition 1.2. Suppose that X is finite.

a. If a choice function c satisfies finite nonemptiness and choice coherence,
then there exist both a utility function u : X — R and a complete and
transitive preference relation “— that produce choices according to c via

the formulas (1.1) and (1.2), respectively.
b. If a preference relation — on X is complete and transitive, then the choice

Sfunction it produces via formula (1.2) satisfies finite nonemptiness and
choice coherence, and there exists a utility function u : X — R such that

T = y1f and only 1f u(x) = u(y). (1.3)

c.  Given any utility function u : X — R, the choice function it produces via
formula (1.1) satisfies finite nonemptiness and choice coherence, the
preference relation it produces via (1.3) is complete and transitive, and the
choice function produced by that preference relation via (1.2) is precisely
the choice function produced directly from u via (1.1).

In words, choice behavior (for a finite X) that satisfies finite nonemptiness and
choice coherence is equivalent to preference maximization (that is, formula (1.2))
for complete and transitive preferences, both of which are equivalent to utility
maximization (via formulas (1.1) and (1.3)). However expressed, whether in
terms of choice, preference, or utility, this conglomerate (with the two pairs of



assumptions) is the standard model of consumer choice in microeconomics.
A much-used piece of terminology concerns display (1.3), which connects a
utility function # and a preference relation '—. When (1.3) holds, we say that

the utility function u represents the preference relation ‘- .

In terms of economics, Proposition 1.2 is the story of this chapter. Several
tasks remain:
1. We prove the proposition.

2. We consider how (and whether) this proposition extends to infinite X. After
all, in the one example we’ve given, where X = Rk+, we have an infinite X.

Most economic applications will have an infinite X.
3. We have so far discussed the binary relation —, known as weak

preference, which is meant to be an expression of “at least as good as.” In
economic applications, two associated binary relations, strict preference
(“strictly better than™) and indifference (“precisely as good as”) are used;
we explore them and their connection to weak preference.

4. We comment briefly on aspects of the standard model: What if 4 does not
contain all nonempty subsets of X ? What is the empirical evidence for or
against the standard model? What alternatives are there to the standard
model?

1.2. Proving Most of Proposition 1.2, and More

Parts of Proposition 1.2 are true for all X, finite or not.

Proposition 1.3. Regardless of the size of X, if u : X — R, then

a.  the preference relation *— , defined by x '~ y if u(x) >u(y) is complete
and transitive, and - -

b.  the choice function c, defined by c,(A)= {x € A : u(x) 2u(y) for all y €

A} satisfies finite nonemptiness and choice coherence.

Proof. (a) Given any two x and y fiom X, either u(x) > u(y) or u(y) > u(x) (since



u(x) and u(y) are two real numbers); hence either x '~ y ory =, x. That is,
t— , is complete. o -

Ifx t—,yand y = z, then (by definition) u(x) > u(y) and u(y) > u(z); hence
u(x) > u(z) (because > > s transitive for real numbers), and therefore x '— , z. That

is, — is transitive.

(b) Supposex, y € A N B and x € c,(4). Then u(x) >u(y). If moreover, y &
¢,(4), then u(z) > u(y) for some z € A. But u(x) > u(z) since x € ¢, (4) implies
u(x) > u(z) for all z € 4; therefore u(x) > u(y). Sincex € B, this immediately
implies that y & c,(B), since there is something in B, namely x, for which u(y)

Z# u(x). This is choice coherence.

IfA is a finite subset of X, then {r € R : 7 = u(x) for somex € A4} is a
finite set of real numbers. Every finite set of real numbers contains a largest
element; that is, some »* = u(x*) in the set satisfies 7* > r for all the elements of
the set. But this says that u(x¥) > u(x) for all x € 4, which implies that x* €
¢,(4), and c,(A) is not empty.

|
Proposition 1.4. Regardless of the size of X, if '— is a complete and transitive
binary relation on X, the choice function o defined on the set of all nonempty

subsets of X by
c>_(A): ={xE€A:x'— yforally € A}

satisfies finite nonemptiness and choice coherence.

Proof. Supposex, y €E ANB, x € c>_(A), and y € c>_(A). Since x € c>_(A), x
“— y. Since y ¢ c>_(A), y t z for some z € 4. By completeness, z »— y. Since
x € c>_(A), x— z. I claim that y ;‘: x: Assume to the contrary that y '— x,

then x “— z and transitivity of — would imply that y — z, contrary to what



was assumed. But ify Ex, then sincex € B, y € ct(B). That is, ct satisfies
choice coherence.

I assert that if 4 is a finite (and nonempty) set, some x € 4 satisfies x = y
forall y € 4 (hence c>_(A) is not empty). The proofis by induction® on the_size
of A: if4 contains a s_ingle element, say, 4 = {x}, then x — x because '~ is

complete. Therefore, the statement is true for all sets of size 1. Assume
inductively that the statement is true for all sets of size n — 1 and let 4 be a set
of'size n. Take any single element x, ffom 4, and let 4" = 4 N {xy}. A" is a set

of sizen > 1, so there is some x’ € A4’ such thatx"'— y for ally € 4" By
completeness of'u_ either x' '— x, or Xo = b x. In the first case, x" — y for all
y € A4, and we are re done. In the second case, X, }_ Xy by completeness and x,
W yPrall y € 4', since x' = y, and therefore tr transitivity of — tells us that
X }_ ». Hence, for this arb1trary set of size n, we have produced an element at

least as good as every other element. This completes the induction step,

proving the result. -

Proposition 1.5. Regardless of the size of X, suppose the choice function c
satisfies finite nonemptiness and choice coherence. Define a binary relation *—
.onXby

x = yifx € cd{x y}).
Define a new choice function Coc by

ctc(A)= {xEA:x';-__CyforallyEA}.

Then =~ . is complete and transitive, Coc satisfies choice coherence and finite

nonemptiness, and for every subset A of X, either



Ad)= [ or d4)= C}_—C(A)'

Before proving this, please note an instant corollary: If X is finite and ¢ satisfies
finite nonemptiness, then c(4) # (fj ©rall 4 < X, and hence c(4) = Cy (A) for

all 4.

Proof of Proposition 1.5. Since c satisfies finite nonemptiness, either x € c({x,
y})ory € c({x, y}); hence either x =— .y ory &= . x. That is, = . is complete.

Suppose x = .y and y = . z. I assert that choice coherence implies that x
€ c({x, y, z}). Suppose to the contrary that this is not so. It cannot be that y €
c({x, y z}), for if it were, then x could not be in ¢({x, y}) by choice coherence:
Take A= {x, y,z} and B= {x, y};thenx, y € A N B,y € (4), x ¢ (4), and
hence choice coherence implies thatx € ¢(B), contrary to our original
hypothesis. And then, once we know that y & ¢({x, » z}), choice coherence can
be used again to imply that z & ¢({x, y, z}): Now y, z € {x, y, z} N {y, z}, and
ifz € c({x, y z}), since we know that y € c({x, y; z}), this would imply y &
c{y z}), contrary to our original hypothesis. But ifx, y, and z are all not
members ofc({x, » z}), then it is empty, contradicting finite nonemptiness.
Hence, we conclude that x must be a member of c({x, 3; z}). But then choice
coherence and finite nonemptiness together imply that x € c({x, z}), for if it
were not, z must be in ¢({x, z}), and choice coherence would imply that x
cannot be a member of c({x, y, z}). Hence we now conclude that x € c({x, z}),
which means that x '~ . z, and '~ _ is transitive.

Since % . is complete and transitive, we know from Proposition 1.4 that ¢

« satisfies finite nonemptiness and choice coherence.

Now take any set 4 and any x € c(4). Let y be any other element of 4. By
finite nonemptiness and choice coherence, x must be in ¢({x, y}), because, ifnot,
then y is the sole element of ¢({x, y}) and, by choice coherence, x cannot be an
element ofc(4). Therefore, x = . y. This is true for every membery of4;
therefore x € c;__c(A)‘ That is, c(4) & ctc(A)'

Finally, suppose x € c>_C(A) and that c(4) is nonempty. Let x, be some



member ¢(4). By the definition ofctc, x ';-_—c Xo, which is to say thatx €
c({xy, x}). But then x & ¢(4) is a violation of choice coherence. Therefore, x €
c(A4), and (assuming c(4) is nonempty) c>_c(A) S ¢(A). This completes the
proof.

1.3. The No-Better-Than Sets and Utility Representations

If you carefully put all the pieces from Section 1.2 together, you see that, to
finish the proof of Proposition 1.2, we must show that for finite X, ifc satisfies
finite nonemptiness and choice coherence, some utility function u gives ¢ via the
formula (1.1), and if'— is complete and transitive, some utility function u

represents =— in the sense of (1.3). We will get there by means of an excursion

into the no-better-than sets.

Definition 1.6. For a preference relation *— defined on a set X (of any size)

and for x a member of X, the no-better-than x set, denoted NBT (x), is defined
by

NBT(x)={y € X:x'— y}.

In words, y is no better than x ifx is at least as good as y. We define NBT (x) for
any preference relation —, but we are mostly interested in these sets for

complete and transitive — , in which case the following result pertains.

Proposition 1.7. If — is complete and transitive, then NBT(x) is nonempty
for all x. In particular, x € NBT (x). Moreover, x — y if and only if NBT ()
S NBT(), and if x'— y but y t X, then NBT(y) is a proper subset of

NBT(x). Therefore, the collection of NBT sets nest; that is, if x and y are any
two elements of X, then either NBT(x) is a proper subset of NBT(y), or
NBT(y) is a proper subset of NBT (x), or the two are equal.



This is not hard to prove, so I leave it to you in case you need practice with
these sorts of exercises in mathematical theorem proving.

Proposition 1.8. If X is a finite set and — is complete and transitive, then the
function u : X — R defined by

u(x) = the number of elements of NBT (x)

satisfies u(x) > u(y) if and only if x — y.

Proof. This is virtually a corollary ofthe previous proposition, but since I failed
to give you the proof of that proposition, I spell this one out. Suppose x ‘=~ y.
Then by Proposition 1.7, NBT(y) & NBT(x), so u(y) <u(x); that is, u(x) >
u(y).

Conversely, suppose u(x) >u(y). Then there are least as many elements ol
NBT (x) as there are of NBT(y). But, by Proposition 1.7, these sets nest; hence
NBT(y) & NBT(x). Ofcourse, y € NBT (), abd hence y € NBT(x) so x =~ y.

|

To finish off the proof of Proposition 1.2, we need to produce a utility
fanction u fiom a choice function ¢ in the case of finite X. Here is one way to do
it: Assume X is finite and ¢ is a choice function on X that satisfies finite
nonemptiness and choice coherence. Use ¢ to generate a preference relation '— .,

which is immediately complete and transitive. Moreover, ifc>_c is choice

generated fiom — ., we know (since X is finite; hence ¢(4) is nonempty for

o

every 4) that Cye is precisely ¢). Use the construction just given to produce a

utility finction u that represents =~ .. Because, for any 4,

C(A):c:s_c(A): (XxXEA:x'— yhraly € 4},

we know immediately that



c(A)—c A ={x € 4:ux)>u@y) Prally € 4}.

Done.

Although a lot of what is proved in this section and in Section 1.2 works
for any set X, in two places we rely on the finiteness of X.

1. In the proof of Proposition 1.8, if NBT(x) can be an infinite set, defining

u(x) to be the number of elements of NBT (x) does not work.

2. In several places, when dealing with choice functions, we had to worry
about «(4) = [y for infinite 4. We could have added an assumption that c(4)

is never empty, but for reasons to be explained, that is a bad idea.

We deal with both these issues in Sections 1.5 and 1.6, respectively, but to
help with the exposition, we first take up issues related to preference relations.

1.4. Strict Preference and Indifference
In terms of preferences, the standard theory of choice deals with a complete and
transitive binary relation =, often called weak preference. The statement x *=— y
means that the consumer Judges x to be at least as good as y; that is, cither x
and y are equally good or x is better than y.

For any pairx andy, completeness implies that of the four mutually
exclusive possibilities ennumerated in the first paragraph of page 3, one of the
first three must hold, namely

1. bothx “— yand y '~ x, or
2. x'— ybutnoty'— x, or
3. yi— xbutnotx'— y.
In case 1, we say that the consumer is indifferent between x and y and write x ~

y. In case 2, we say that x is strictly preferred to y and write x > y. And in case
3, y is strictly preferred to x, written y > x.



Proposition 1.9. Suppose weak preference '~ is complete and transitive. Then
a. x'‘=yifand only if it is not the case the y ,‘:— X.

b. Strict preference is asymmetric: If x ‘— ) then it is not the case that y “—
X

o

Strict preference is negatively transitive: If x ‘= ) then for any third
element z, either z *—y or X *=—
d. Indifference is reflexive: x ~ x for all x.
Indifference is symmetric: If x ~y, then y ~ x.

e
f. Indifference is transitive: If x ~y and y ~ z, then x ~ z.

g Ifx'— yandy}—zthenx zlfx}—yundy}—z, then x '~ z.
h

Strict preference is transitive: If x —y and y ‘=~ z, then x '=—

Proof. Asymmetry of strict preference is definitional: x %~ y ifx % y and not y
= x, either of which implies not y >x. Indifference is reflexive because b= is
c:mplete; hence x = x for all x. Indiference is symmetric because the definition
of indifference is syEmetric. Indifference is transitive because “~ is transitive: I
x~yandy~z, thenx '~ y, y'— z, z % y, and y '~ X, and_henoex‘;_ z and
z = X, S0 x ~z. This leaves a,_c, g, and h to prove._ o

For g, ifx =~ y thenx =~ y. If in additiony = z, thenx = z by
transitivity. Suppose z = x. Then by transitivity of‘-— , V= z = ximplies y
“— x, contradicting the hypothesm that x = y. Thereﬁ)re it is not true that z

x, and hence x *~ z. The other halfis similar.

IT R

Forh, ifx — yand y “~ z, then y }-— z. Apply part g.
For a, ifx %=~ y, then x = y and not y = x by definition, so in particular
not y = x. Conversely, not y y = x implies x ‘-— y by completeness of =, and

these two together are x - y by the definition of \



For c, suppose x %~ y but not z '~ y. By part a, the second is equivalent to

y = z, and then x — z by part g.
- |
We began with weak preference '~ and used it to define strict preference *—

and indiference ~. Other textbooks begin with strict preference “~ as the
primitive and use it to define weak preference “~ and indiflerence ~. While the

standard theory is based on a complete and transitive weak preference relation, it
could equally well be based on strict preference that is asymmetric and
negatively transitive:

Proposition 1.10. Suppose a binary relation *— is asymmetric and negatively
transitive. Define '~ by x “— y if not y *— x, and define ~ by x ~ y if neither x
ey nor y %= x. Then — is complete and transitive, and if we defined ~' and
' from ‘s~ according to the rules given previously, ~' would be the same as

~, and ‘— “would be the same as .
Proving this makes a good exercise and so is left as Problem 1.9.

1.5. Infinite Sets and Utility Representations

This section investigates the following pseudo-proposition:

If '— is a complete and transitive binary relation on an arbitrary set X, then
some function u : X — R can be found that represents ‘— ; that is, such that x

7=y if and only if u(x) = u(y).

Proposition 1.3 tells us the converse: If— is represented by some utility

function u, then = must be complete and transitive. But is the pseudo-

proposition true? The answer is no, of course; we would not call this a pseudo-
proposition if the answer were yes. I do not give the standard counterexample
here; it is found in Problem 1.10.

Rather than give the standard counterexample, we look for fixes. The idea is



to add some assumptions on preferences or on X or on both together that make
the proposition true. The first fix is quite simple.

Proposition 1.11. If— is a complete and transitive binary relation on a

countable set X, then for some fanction u : X — R, u(x) > u(y) if and only ifx
_

(A set X is countable if its elements can be enumerated; that is, if there is a way
to count them with the positive integers. All finite sets are countable. The set of
integers is countable, as is the set of rational numbers. But the set of real
numbers is not countable or, in math-speak, is uncountable. Proving this is not
trivial.)

Proof. Let {x|, x,, ...} be an enumeration of the set X. Defined : X — R by
d(x,) = (% )". Define, for each x,

zeNBT(x)

(The series {% % - % Ao }- is absolutely summable, so the potentially
infinite sum being taken in the display is well defined. If you are unclear on
this, you need to review [I hope it is just a review!] the mathematics of
sequences and series.) Suppose x — y. Then NBT(y) & NBT(x), so the sum

that defines u(x) includes all the terms in the sum that defines u(y) and perhaps
more. All the summands are strictly positive, and therefore u(x) > u(y).
Conversely, we know that the NBT sets nest, and so u(x) >u(y) only il
NBT(y) & NBT(x). Therefore u(x) > u(y) implies y € NBT(y) & NBT(x); y €
NBT (x), and hence x '~ y.
- |

Compare the proofs of Propositions 1.8 and 1.11. In Proposition 1.8, the
u(x) is defined to be the size of the set NBT(x). In other words, we add 1 for



every member of NBT (x). Here, because that might get us into trouble, we add
instead terms that sum to a finite number, even if there are (countably) infinitely
many of them, making sure that the terms are all strictly positive so that more
summands means a bigger sum and so larger utility.

The hard part is to go ffom countable sets X to uncountable sets. A very
general proposition does this for us.

Proposition 1.12. Suppose — is a complete and transitive preference relation
on a set X. The relation — can be represented by a utility function if and only

if some countable subset X* of X has the property that if x — y for x and y
from X, then x ‘= x* wy for some x* € X*

Proof. Suppose X* exists as described. Enumerate X* as {x*, x*,, ...} and let

d(x*,) = (% )". For each x € X, define

Ux) = Z d(x*).

Pere X +*MINBT(x) }

Ifx *— y, then NBT(y) & NBT (x); hence NBT(y) N X* & NBT(x) N X* The
sum defining u(x) is over at least as large a set as the sum defining u(y), and all
the summands are positive, so u(x) > u(y).

To show the converse, we use the contrapositive: If not y '~ x, then not
u(y) > u(x). Not y "= x is equivalent to x = y, and not u(y) > u(x) is u(x) > u(y).
But ifx “~ y, then there is some x* in X* such that x “— x* “~— y. Hence x* is
in the sum that defines u(x) but not in the sum that defines u(y). Otherwise,
every term in sum defining u(y) is in the sum defining u(x) (see the previous
paragraph), and therefore u(x) > u(y).

You may wish to avoid on a first reading the proof'that if — is represented
by the utility function u, then such a countable set X* exists. This proof is
somewhat technical and filled with special cases.



Let {/,} be an ennumeration of all closed intervals with rational endpoints;

that is, each I, is an interval of  the form
g . g where . = @ are rational numbers. (The set of
[;]1 7] n q.,
rational numbers is countable and the cross product of two countable sets is
countable.) Let u(X) denote the set of real numbers {r € R : r = u(x) for some x
€ X}. Consider three possibilities:
1. Ifu(X) N I, is nonempty, pick some single x € X such that u(x) € I, and
call this x,,.

2. Ifu(X) N1, is empty, let #, = inflr € u(X) : r > gn}. Ifu(x) = §, for
some x € X, choose one such x and call this x,.

3. Hfu(X) NI, is empty and §, #u(x) fr allx € X, then do not bother
defining x,,.

Let X* be the set of all x,, created in cases 1 and 2. Since there are countably
many intervals 7, and at most one x,, is produced for each /,, X* is a countable
set.

Now suppose x — y in X. Since u represents “—, u(x) > u(y). Choose some
rational number ¢ in the open interval (u(y), u(x))._Let F=iflr € ulX):r =
q}. Clearly, u(x) = §, since u(x) is in the set over which we are taking the
infimum. There are two cases:

1. Ifu(x) = §, let ¢’ be some rational number such that u(x) = ¢’ '~ ¥+, and
let n be the index of the interval [g, ¢']. By construction, u(X) N [g, ¢'1 # [
(you may have to think about that one for a minute); hence there is x* €
X*, namely x,, with u(x*) € [g, ¢, which means u(x) = u(x*=— u(y).
Done.

2. Ifu(x) = §, then let ¢’ be some rational number such that g — ¢" — u(y),
and let n be the index of the interval [¢) g]. Ifu(X) N [¢’ g] # (§§ , then there
isx* € X* with u(x) >¢g >u(x* >¢' > u(y), and therefore x > x* >y.



Alternatively, ifu(X) N [¢) g] =, then the interval [¢’ ¢] fits into
category € above, and in particular, there is some x* € X* namely x,,
such that u(x*) = § = u(x). But for this x* u(x) = u(x*) > u(y); hence x =

x* *— y. Once again, done.
|

Proposition 1.12 gives a necessary and sufficient condition that, in addition
to “— being complete and transitive, provides for a utility representation. This
proposition is, therefore, the most general such proposition we can hope for. But
general or not, it is not hugely useful, because the condition—the existence of
the countable subset X*—is not very practical. How can you tell, in a particular
application, ifsuch a countable subset exists?

For practical purposes, the usual method is to make fopological
assumptions about X and *~— . To illustrate this method, and also to take care of
the vast majority of applications you are likely to encounter in a career in
economics, I’ll specialize to the case where X = Rlﬁr, with the interpretation that
there are & commodities and x € X is a bundle of goods. In this context, the
following definition makes sense:

Definition 1.13. Complete and transitive preferences — on X =Rk L are

continuous if, for every pair x and y from X with x *— ) we can find an € >
0 such that for every bundle x' € X that is less than € distant from x and for
every bundle y' € X that is less than € distant from y, x' =—y'.

In this definition, the distance between two points is the length of the line
segment that joins them; that is, we use Euclidean distance.’

The idea is captured by Figure 1.2. Ifx %~ y, then of course x #y. Denote
the distance between them by d. If we take a small enough €, say € equal to
1% ofd, then everything within € ofx will be very close to being as good as x,
and everything within € ofy will be very close to being as good (or bad) as y.
Since x %~ y, if we make the balls small enough, everything in the ball around x

should be strictly better than everything in the ball around y.



" distance d
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Figure 1.2. Continuity of preferences. Suppose x = y, and the distance

between x and y is d. If preferences are continuous, we can put a ball
around x and a ball around y, where you should think of the diameters of
the balls being small relative to d, such that for all x" in the ball around x
and or all y"in the ball around y, x' ‘= y"

This definition of continuity of'— provides us with a very nice picture,

Figure 1.2, but is neither mathematically elegant nor phrased in way that is
useful in proofs of propositions that assume continuous preferences. The next
proposition provides some equivalent definitions that are both more elegant and,
in many cases, more useful.

Proposition 1.14. Continuity of preferences ‘= on Rk+ imply the following,
and any one of the following imply that preferences = on RkJr are continuous.

(Therefore, continuity of preferences could equivalen_tly be defined by any one
of the following, each of which implies all the others.)
a. If {x,} is a sequence from RkJr with x,, = y for all n, and if lim,_,, x, =

X, then x '— y. If {x,} is a sequence from Rlﬁr with y = x, for all n, and
if lim,_,, x, = X, theny '— x.
b. If {x,} is a sequence from Rk+ with lim,_,, x, = x, and if x >y, then for

all sufficiently large n, x,, = y. And if lim,_,, x, =X, and y ‘= x, then for

all sufficiently large n, y = x,,.



c¢. Forallx € Rk+ , the sets NBT (x) and NWT(x) = {y € R'I‘Jr 1y = X} are
both closed sets. (NWT is a mnemonic for No Worse Than.) -

d. Forall x € R*,_, the sets SBT(x) = {y € R, :y " x} and SWT(x) =
{y € Rlﬂr 1 x — y} are both (relatively, in Rk+) open sets.* (SBT is a
mnemonic for Strictly Better Than, and SWT stands for Strictly Worse
Than.)

The proof of this proposition is left as an exercise, namely Problem 1.11.
Providing the proof is a good diagnostic test for whether you understand
concepts of open and closed sets and limits in Euclidean spaces. If you aren’t
sure that you can provide a proof, you should review these basic topological (or,
ifyou prefer, analytical) concepts until you can prove this proposition; I provide
a written-out proofin the Student’s Guide.

The reason for the definition is probably clear:

Proposition 1.15. If X = RkJr and preferences “=— are complete, transitive, and

continuous on X, then = can be represented by a utility function u; that is,

u(x) > u(y) if and only lf;‘;— ».

Proof. The proof consists of showing that there is a countable subset X* of X
that does the trick, in the sense of Proposition 1.12. For instance, let X* be all
bundles x € X all of whose components are rational numbers. There are
countably many of these bundles. Suppose x *~ y. Look at the line segment that
joins x to y; that is, look at bundles that are convex combinations ofx and y, or
bundles ofthe form ax + (1 —a)y fora € [0, 1]. Let a; = infla € [0, 1] : ax +
(1 —a)y = x}. It is easy to see that a; > 0; we can put a ball of some size € >
0 around y such that every bundle in the ball is strictly worse than x, and for
small enough a, convex combinations ax + (1 — a)y all lie within this ball. Let
x denote ajx + (1 —ay)y; I claim that x; ~x. To see this, consider the other
two possibilities (both of which entail a; # 1, of course): Ifx; —x, then there is
a ball of positive radius around x; such that everything in the ball is strictly
preferred to x, but this would mean that for some convex combinations ax + (1 —



a)y with a < a;, ax+ (1 — a)y ' x, contradicting the definition ofz;. And if x
“— X, then a ball of positive Tadius around x; will be such that everything in
the ball is strictly worse than x. This ball includes all convex combinations ax
+ (1 — a)y with a a bit bigger than a,, again contradicting the definition of a;.
Since x; ~x, x| = y. There is a ball of positive radius around x; such that
everything in the ball is strictly better thany. This includes convex
combinations ax + (I —a)y that have a slightly smaller than a;. But by the
definition ofa,, all such convex combinations must be strictly worse than x.
Therefore, we know for some a, less than a;, and for x, = a,x + (1 — ay)y, x '~
¥, = y. Now we are in business. We can put a ball of positive radius around x,
such that everything in the ball is strictly worse than x, and we can put a ball of
positive radius around x, such that everything in the ball is strictly better than
y. Taking the smaller of these two radii, everything z in a ball of that radius
satisfies x “— z — y. But any ball of positive radius contains bundles all of
whose components are rational; hence some x* € X* satisfies x — x* — y.

Done. -

This proof uses the original definition of continuity. Can you construct a
more elegant proofusing one of the alternative characterizations of continuity of
preferences given in Proposition 1.14?

Proposition 1.15 says that continuous preferences have a utility
representation. We might hope for something more, namely that continuous
preferences have a utility representation where the function  is itself continuous.
‘We have not proved this and, in fact, the utility functions that we are producing
in this chapter are wildly discontinuous. (See Problem 1.12.) In Chapter 2, we
see how to get to the more desirable state of affairs, where continuous preferences
have a continuous representation.

1.6. Choice from Infinite Sets

The second difficulty that infinite X poses for the standard theory concerns the
possibility that o(4) = ) for infinite sets 4. One of the two properties of choice



functions that characterize the standard model is that ¢(4) is nonempty for finite
sets A; we could simply require this of all sets 4; that is, assume away the
problem. But this is unwise: Suppose, for instance, that X = R? +, and define a
utility function u by u(x) = u((x;, x,)) = x;+x,. Consider the subset of X given
by 4 = [0, 1) x [0, 1); that is, 4 is the unit square, but with the north and east
edges removed. The set {x € 4 : u(x) > u(y) for all y € A} is empty; from this
semi-open set, open on the “good” sides, no matter what point you choose,
there is something better according to u. If we insisted that ¢ is nonempty
valued for all 4, we wouldn’t be consistent with utility maximization for any
strictly increasing utility finction, at least for sets 4 like the one here.

A different approach is to define choice only for some subsets of X and, in
particular, to restrict the domain of ¢ to subsets of X for which it is reasonable to
assume that choice is nonempty; then strengthen finite nonemptiness by
dropping its restriction to finite sets. See Problem 1.15 for more on this
approach.

We can leave things as they are: Proposition 1.5 guarantees that if ¢ satisfies
finite nonemptiness and choice coherence, then for infinite 4,

od)= [ orc(d) = Ct‘(A)’

for — . defined fiom c. As long as c(4) is not empty, it gives the “right”

answer. But still, it would be nice to know that ¢(4) is not empty for the
appropriate sorts of infinite sets 4. For instance, if X is, say, Rl‘+ and ¢ generates

continuous preferences, c(4) should be nonempty for compact sets 4, at least.
(Why should this be true? See Proposition 1.19.) And in any setting, suppose
we have a set 4 that contains x and that is a subset of NBT(x). Then ¢(4) ought
to be nonempty, since it should contain x.

These are nice things to have, but they can’t be derived from finite
nonemptiness and choice coherence; further assumptions will be needed to have
them. To demonstrate this, imagine that c is a well-behaved choice function; it
satisfies finite nonemptiness and choice coherence and is nonempty for all the
“right” sorts of infinite sets 4. Modify ¢, creating ¢, by letting ¢((4) = [} for an
arbitrary collection ofinfinite sets 4. For instance, we could let ¢(4) = [ for all



compact sets that contain some given x*, or for all sets 4 that are countably
infinite, or for all sets that contain x* or are countably infinite but not both.
When I say “for an arbitrary collection of infinite sets,” I mean “arbitrary.”
Then ¢’ satisfies finite nonemptiness (of course, since it is identical to ¢ for such
arguments) and choice coherence. The latter is quite simple: Supposex, y € 4
N B, x € c(4), and y € c(4). Since c(4) # [, c'd) = c4); since c satisfies
choice coherence, y & o(B). If ¢'(B) # (i then ¢(B) = c(B) and hence y & c'(B). On
the other hand, ifc'(B) = j , then y € c/(B).

There are lots of assumptions we can add to finite nonemptiness and choice
coherence, to ensure that ¢ is well-behaved on infinite sets. But perhaps the
most general is the simplest. Begin with a choice function ¢ that satisfies finite
nonemptiness and choice coherence. Generate the corresponding preference
relation = .. Use that preference relation to generate, for each x € X, NBT._

(), where I’ve included the subscript ‘: . to clarify that we are beginning with

the choice function ¢. Then,

Assumption 1.16. If x € 4 & NBT;-C(X)’ A # -

Let me translate this assumption into words: If faced with a choice from some
set 4 that contains an element x, such that everything in 4 is revealed to be no
better than x when pairwise comparisons are made (that is, x € c({x, y}) for all
y € A), then the consumer makes some choice out of 4. (Presumably that
choice includes x, but we do not need to assume this; it will be implied by
choice coherence.)

Proposition 1.17. 4 choice function c that satisfies finite nonemptiness and
choice coherence is identical to choice generated by the preferences it generates
—that is, ¢ = c:,_c—ifana' only if it satisfies Assumption 1.16.

Proof. Suppose ¢ = . cand 4 is aset withx € 4 S NBT._ (). Then by the
definition ofctc, X e C}_—c(A)' Since ¢ *‘7}_—0 this 1mplles that c(4) is
nonempty. (Therefore, in fact, c¢(4) = c>_C(A) by Proposition 1.5.) Conversely,



suppose c¢ satisfies Assumption 1.16. Take any A. Either c>_c(A) =@ oorF -
In the first case, c>_C(A) =cd) = ) by Proposition 1.5. In_the second case, let
x be any element ?)fc:,_C(A). Thenx € A and, by the definition ofc:,_c, A4 <
NBT>_C(x). By Assu:nption 1.16, «(4) is nonempty, and Proposi?ion 1.5
implics that (4) = c._(4).

|

An interesting complement to Assumption 1.16 is the following.

Proposition 1.18. Suppose that c satisfies finite nonemptiness and choice
coherence. If A is such that, for everyx € A, A7 NBT b ), then ()= [ .

That is, the collection of sets in Assumption 1.16 for which it is assumed a
choice is made is the largest possible collection of such sets, if choice is to
satisfy finite nonemptiness and choice coherence. The proof is implicit in the
proof of Proposition 1.17: If ((4) # (fj , then c(4) = c>_C(A) by Proposition 1.5,

and for any x € ¢(4) = c>_C(A), it is necessarily the case that 4 & NBT>_C(x).
What about properties such as, ¢ is nonempty valued for compact sets 4?

Let me state a proposition, although I reserve the proof until Chapter 2 (see,
however, Problem 1.13):

Proposition 1.19. Suppose X = RkJr . Take a choice function c that satisfies

finite nonemptiness, choice coherence, and Assumption 1.16. If the preferences
= . generated from c are continuous, then for any nonempty and compact set

A4, ) £ -

1.7. Equivalent Utility Representations
Suppose that ~— has a utility representation . What can we say about other

possible numerical representations?



Proposition 1.20. If u is a utility-function representation of — and f is a

strictly increasing function with domain and range the real numbers, then v
defined by W(x) = flu(x)) is another utility-function representation of ‘=~ .

Proof. This is obvious: Ifu and v are related in this fashion, then wx) >wy) il
and only ifu(x) > u(y).

The converse to this is untrue: That is, it is possible that v and u both
represent — , but there is no strictly increasing fiunction f': R — R with w(x) =

flu(x)) for all x. Instead, we have the following result.

Proposition 1.21. The functions u and v are two utility-function
representations of weak preferences *— if and only if there is a function f : R
— R that is strictly increasing on the set {r € R : r = u(x) for some x € X}
such that v(x) = flu(x)) for all x € X. Moreover, the function f can be taken to
be nondecreasing if we extend its range to R U {—0, oo},

Problem 1.14 asks you to prove this.

These results may seem technical only, but they make an important
economic point. Utility, at least as far as representing weak preferences is
concerned, is purely ordinal. To compare utility differences, as in u(x) — u(y) >
u(y) — u(z), and conclude that “x is more of an improvement over y than y is
over z,” or to compare the utility of'a point to some cardinal value, as in u(x) <
0, and conclude that “x is worse than nothing,” makes no sense.

1.8. Commentary

This ends the mathematical development of the standard models of choice,
preference, and utility. But a lot of commentary remains.

The standard model as positive theory

At about this point (if not earlier)) many students object to utility
maximization. “No one,” this objection goes, “chooses objects after consulting
some numerical index of goodness. A model that says that consumers choose in
this fashion is a bad description of reality and therefore a bad foundation for any



useful social science.”

Just because consumers don’t actively maximize utility doesn’t mean that
the model of utility-maximizing choice is a bad descriptive or positive model.
To suppose that individuals act as if they maximize utility is not the same as
supposing that they consciously do so. We have proven the following: If choice
behavior satisfies finite nonemptiness and the choice coherence, then (as long as
something is chosen) choice behavior is as if it were preference driven for some
complete and transitive weak preference relation. And if the set of objects for
which choice is considered is countable or if revealed preferences are continuous,
then preference-driven choice is as if it were done to maximize a numerical
index of goodness.

Utility maximization is advanced as a descriptive or positive model of
consumer choice. Direct falsification of the model requires that we find
violations of nonemptiness or choice coherence. If we don’t, then utility
maximization is a perfectly fine as-if model of the choices that are made.

Incomplete data about choice

Unhappily, when we look at the choices of real consumers, we do see some
violations of choice coherence and nonemptiness (or, when we ask for preference
judgments, of completeness and transitivity). So the standard model is
empirically falsified. We will discuss this unhappy state of affairs momentarily.

But another problem should be discussed first. The assertion of two
paragraphs ago fails to recognize the empirical limitations that we usually face.
By this I mean, to justify utility maximization as a model of choice, we need to
check the consumer’s choice finction for every subset 4 of X, and for each 4 we
need to know all of ¢(4). (But see Problem 1.15 for a slight weakening of this.)
In any real-life situation, we will observe (at best) ¢(4) for finitely many subsets
of X, and we will probably see something less than this; we will probably see
for each of a finite number of subsets of X one element out of ¢(4); namely, the
object chosen. We won’t know ifthere are other, equally good members of 4.

To take seriously the model of utility maximization as an empirically
testable model of choice, we must answer the question: Suppose we see c(4), or
even one element from ¢(4), for each of a finite number of subsets 4 of X. When
are these data consistent with utility maximization?

The answer to this question at the level of generality of this chapter is left to



you to develop; see Problem 1.16. In Chapter 4, we will provide an answer to a
closely related problem, where we specialize to the case of consumer demand
given a budget constraint.

Now for the bigger question: In the data we see, how does the model do?
What criticisms can be made of it? What does it miss, by how much, and what
repairs are possible? Complete answers to these questions would take an entire
book, but I can highlight several important categories of empirical problems,
criticisms, and alternatives.

Framing

In the models we have considered, the objects or consumption bundles x are
presented abstractly, and it is implicitly assumed that the consumer knows x
when she sees it. In real lif, the way in which we present an object to the
consumer can influence how she perceives it and (therefore) what choices she
makes. Ifyou find this hard to believe, answer the following question, which is
taken ffom Kahneman and Tversky (1979):

As a doctor in a position of authority in the national government,
you’ve been informed that a new flu epidemic will hit your country
next winter and that this epidemic will result in the deaths of 600
people. (Either death or complete recovery is the outcome in each case.)
There are two possible vaccination programs that you can undertake,
and doing one precludes doing the other. Program A will save 400
people with certainty. Program B will save no one with probability 1/3
and 600 with probability 2/3. Would you choose Program A or
Program B?

Formulate an answer to this question, and then try:

As a doctor in a position of authority in the national govenment,
you’ve been informed that a new flu epidemic will hit your country
next winter. To fight this epidemic, one of two possible vaccination
programs is to be chosen, and undertaking one program precludes
attempting the other. If Program X is adopted, 200 people will die with
certainty. Under Program Y, there is a 2/3 chance that no one will die,
and a 1/3 chance that 600 will die. Would you choose Program X or



Program Y?

These questions are complicated by the fact that they involve some uncertainty,
the topic of Chapter 5. But they make the point very well. Asked of health-care
professionals, the modal responses to this pair of questions were: Program A is
strictly preferred to B, while Program X is worse than Y. To be clear, the modal
health-care professional strictly preferred A to B and strictly preferred X to Y.
The point is that Program A is precisely Program X in terms of outcomes, and
Programs B and Y are the same. They sound different because Programs A and
B are phrased in terms of saving people, while X and Y are phrased in terms ol
people dying. But within the context of the whole story, A is X and B is Y.
Yet (by the modal response) A is better than B, and X is worse than Y.
Preference judgments certainly depend on frame.

The way bundles are framed can affect how they are perceived and can
influence the individual’s cognitive processes in choosing an alternative. Choice
coherence rules out the following sort of behavior: A consumer chooses apple
pie over cherry if those are the only two choices, but chooses cherry when
informed that peach is also available. Ruling this out seems sensible—the ruled-
out behavior is silly—but change the objects and you get a phenomenon that is
well known to (and used by) mail-order marketers. When, in a mail-order
catalog, a consumer is presented with the description of an object, the consumer
is asked to choose between the object and her money. To influence the
consumer to choose the object, the catalog designer will sometimes include on
the same page a slightly better version of the object at a much higher price, or a
very much worse version of the object at a slightly lower price. The idea is to
convince the consumer, who will compare the diferent versions of the object,
that one is a good deal, and so worthy of purchase. Of course, this strikes
directly at choice coherence.

The point is simple: When individuals choose, and when they make
pairwise preference judgments, they do so using various processes of perception
and cognition. When the choices are complex, individuals simplify, by focusing
(for example) on particularly salient fatures. Salience can be influenced by the
frame: how the objects are described; what objects are available; or (in the case
of pairwise comparisons) how the two objects compare. This leads to violations
of choice coherence in the domain of choice, and intransitivities when consumers
make pairwise preference judgments.



Indecision

Indecision attacks a different postulate of the standard model: finite
nonemptiness or, in the context of preference, completeness. If asked to choose
between 3 cans of beer and 10 bottles of wine or 20 cans of beer and 6 bottles of
wine, the consumer might be unable to make a choice; in terms of preferences,
she may be unable to say that either bundle is as good or better than the other.

An alternative to the standard model allows the consumer the luxury of
indecision. In terms of preferences, for each pair of objects x and y the consumer
is assumed to choose one (and only one) of four alternatives:

risbetterthany or yisbetterthanr or

v and y are equally good or  Ican'trank them,

In such a case, expressed strict preference and expressed indiference are taken as
primitives, and (it seems most natural) weak preference “— is defined not as the

absence of strict preference but instead as the union of expressed strict preference
and expressed indiference. In the context of such a model, transitivity of strict
preference and reflexivity of expressed indifference seem natural, transitivity of
expressed indifference is a bit problematic, and negative transitivity of strict
preference is entirely problematic: The whole point of this alternative theory is
that the consumer is allowed to say that 4 cans of beer and 11 bottles of wine is
strictly better than 3 and 10, but both are incomparable to 20 cans of beer and 6
bottles of wine. In terms of choice functions, we would allow c(4) = [} —"a

5

choice is too hard”™—even for finite sets 4, although we could enrich the theory
by having another function b on the set of subsets of X, the rejected set function,
where for any set 4, b(4) consists of all elements of 4 for which something else
in A is strictly better.

Inconsistency and probabilistic choice

It is not unknown, empirically, for a consumer to be offered a (hypothetical)
choice between x and y and indicate that she will take x, and later to be offered
the same hypothetical choice and indicate that she prefers y. This can be an issue



of ffaming or anchoring; something in the series of questions asked of the
consumer changes the way she views the relative merits ofx and y. Or it can be
a matter of indecision; she is not really sure which she prefers and, if forced to
make a choice, she does so inconsistently. Or it could be simple inconsistency.
Whatever it is, it indicates that when we observe the choice behavior of real
consumers, their choices may be stochastic. The standard model assumes that a
consumer’s prefrences are innate and unchanging, which gives the strong
coherence or consistency of choice (as we vary the set 4) that is the foundation of
the theory. Perhaps a more appropriate model is one where we suppose that a
consumer is more likely or less likely to choose a particular object depending
on how highly she values it “innately,” but she might choose an object of lower
“utility” if the stars are in the right alignment or for some other essentially
random reason.

To deal empirically with the choices of real consumers, one needs a model
in which there is uncertainty in how they choose—how can you fit a model that
assumes rigid consistency and coherence to data that do not exhibit this?—the
likelihood functions just do not work—and so, especially in the context of
discrete choice models, microeconomists have developed so-called random
utility or probabilistic-choice models. In these models, choice in diferent
contexts exhibits coherence or consistency statistically, but choices in specific
instances may, ffom the perspective ofthe standard model, appear inconsistent.

The determinants of preference

The standard model makes no attempt to answer the question, Where do
preferences come ffom? Are they something innate to the individual, given (say)
genetically? Or are they a product of experience? And if they are a product of
experience, is that experience primarily social in character? Put very baldly,
does social class determine preferences?

These questions become particularly sharp in two contexts that we reach in
this book. The first concerns dynamic choice. If the consumer’s experiences
color her preferences for subsequent choices, having a model of how this happens
is important for models of how the consumer chooses through time. This is true
whether her earlier choices are made in ignorance of the process or, more
provocatively, if her earlier choices take into account the process. We will visit
this issue briefly in Chapter 7, when we discuss dynamic choice theory; it arises



very importantly in the context of cooperation and trust in dynamic
relationships (and is scheduled for discussion in that context in Volume 3).

These questions are also important to so-called welfare analysis, which we
meet in Chapter 8. Roughly, a set of institutions will be “good” if they give
consumers things they (the consumers) prefer Those who see preferences as
socially determined ofien balk at such judgments, especially if, as is sometimes
supposed, members of an oppressed class have socially determined tastes or
preferences that lead them to prefer outcomes that are ““objectively” bad. In this
book, we fPllow the principles of standard (western, or capitalist, or
neoclassical) economics, in which the tastes and preferences of the individual
consumer are sovereign and good outcomes are those that serve the interests of
individual consumers, as those consumers subjectively perceive their own
interests. But this is not the only way one can do economics.

The range of choices as a value

To mention a final criticism of the standard model, some economists (perhaps
most notably, the Nobel Laureate Amartya Sen) hold that standard theory is too
ends-oriented and insufficiently attentive to process, in the following sense: In
the standard theory, suppose x € ¢(4). Then the individual is equally well off il
given a choice from 4 as if she is simply given x without having the
opportunity to choose. But is this correct? If individuals value being able to
choose, and there is ample psychological evidence that they do (although there
is also evidence that too much choice becomes bad), it might be sensible to use
resources to widen the scope of choice available to the individual, even if this
means that the final outcome chosen is made a bit worse evaluated purely as an
outcome.

I call the standard model by that name because it is indeed the standard,
employed by most models in microeconomics. The rise of behavioral
economics and the development of random-choice models in empirical work
make this less true than it was, say, a decade ago. But still, most models in
microeconomics have utility-maximizing or preference-maximizing consumers.
Certainly, except in a very fw and brief instances, that is what is assumed in
the remainder of this book.

My point, then, in raising all these caveats, criticisms, and possible



alternatives to the standard model is not to indicate where we are headed.
Instead, it is to remind you that the standard model starts with a number of
assumptions about human choice behavior, assumptions that are not laws of
nature. Too many economists learn the standard model and then invest in it a
quasi-religious aura that it does not deserve. Too many economists get the idea
that the standard model defines ““rational” behavior and any alternative involves
irrational behavior, with all the pejorative affect that the adjective “irrational”
can connote. The standard model is an extremely usefil model. It has and
continues to generate all manner of interesting insights into economic (and
political, and other social) phenomena. But it is just a model, and when it is
time to abandon it, or modify it, or enrich it, one should not hesitate to do so.

Bibliographic Notes

The material in this chapter lies at the very heart of microeconomics and, as
such, has a long, detailed, and in some ways controversial history. Any attempt
to provide bibliographic references is bound to be insufficient. “Utility” and
“marginal utility” were at first concepts advanced as having cardinal significance
—the units mean something concrete—but then theory and thought evolved to
the position that (more or less) is taken here: Choice is primitive; choice reveals
preference; and utility maximization is solely a theoretician’s convenient
mathematical construct for modeling coherent choice and/or preference
maximization. If you are interested in this evolution, Robbins (1998) is well
worth reading. Samuelson (1947) provides a classic statement of where
economic thought “wound up.” Samuelson’s development is largely in the
context of consumer choice in perfect markets, subject to a budget constraint;
that is, more germane to developments in Chapters 4 and 11. As I mentioned
within the text of the chapter, to the best of my knowledge, Arrow originated
what I have called “choice coherence” and its connection to preference orderings
in the abstract setting of this chapter; this was done while writing Arrow
(1951a), although the specific results were published in Arrow (1959).

Problems

Most problems associated with the material of this chapter involve proving
propositions or constructing counterexamples. Therefore, these problems will
give you a lot of drill on your theorem-proving skills. If you have never



acquired such skills, most of these problems will be fairly tough. But don’t be
too quick to give up. (Reminder: Solutions to problems marked with an
asterisk [such as *1.1] are provided in the Students Guide, which you can
access on the web at the URL
http://www.microfoundations.stanford.edu/student. )

m *1.1. Affiend of mine, when choosing a bottle of wine in a restaurant, claims
that he always chooses as follows. First, he eliminates ffom consideration any
bottle that costs more than $40.

Then he counts up the number of bottles of wine still under consideration (price
$40 or less) on the wine list that come ffom California, fom France, ffom Italy,
from Spain, and from all other locations, and he chooses whichever of these five
categories is largest. If two or more categories are tied for largest number, he
chooses California if it is one of the leaders, then France, Italy, and Spain, in
that order. He says he does this because the more bottles of wine there are on the
list, the more likely it is that the restaurant has good information about wines
from that country. Then, looking at the geographical category selected, he
compares the number of bottles of white, rosé, and red wine in that category that
cost $40 or less, and picks the type (white/rosé/red) that has the most entries.
Ties are resolved: White first, then red. He rationalizes this the same way he
rationalized geographical category. Finally, he chooses the most expensive
bottle (less than or equal to $40) on the list of the type and geographical
category he selected. Iftwo or more are tied, he doesn’t care which he gets.

Assume every bottle of wine on any wine list can be uniquely described by its
price, place of origin, and color (one of white/rosé/red). The set of all wine
bottles so described (with prices $40 or less) is denoted by X, which you may
assume is finite. (For purposes of this problem, the same bottle of wine selling
for two different prices is regarded as two distinct elements of X.) Every wine list
my fiiend encounters is a nonempty subset 4 of X. (He never dines at a
restaurant without a wine list.)

The description above specifies a choice function ¢ for all the nonempty subsets
of X, with «(4) # [} for all nonempty 4. (You can take my word for this.) Give

an example showing that this choice function doesn’t satisfy choice coherence.


http://www.microfoundations1.stanford.edu/student

m 1.2. Two good fiiends, Larry and Moe, wish to take a vacation together. All
the places they might go on vacation can be described as elements x of some
given finite set X.

Taken as individuals, Larry and Moe are both standard sorts of homo
economicus. Specifically, each, choosing singly, would employ a choice
function that satisfies finite nonemptiness and choice coherence. Larry’s choice
function is ¢ 5y, and Moe’s is cyyy-

To come to a joint decision, Larry and Moe decide to construct a “joint choice
fanction” c* by the rule

CHA) = € grry () U Cpgo(d), Borall 4 € X.

That is, they will be happy as a pair with any choice that either one of them
would make individually.

Does c* satisfy finite nonemptiness? Does c* satisfy choice coherence? To
answer each of these questions, you should either provide a proof or a
counterexample.

m *1.3. Disheartened by the result (in Problem 1.2) of their attempt to form a
joint choice function, Larry and Moe decide instead to work with their
preferences.  Let — be Larry’s (complete and transitive) preferences

constructed fom ¢y 5y, and let — g0, be Moe’s. For their “joint” preferences
— * they define

Larry

X _‘:_—*yifx _‘:_—Larryyorx _‘:_—Moey.

In words, as a pair they weakly prefer x to y if either one of them does so. Prove
that — * is complete. Show by example that it need not be transitive.

m 1.4 What is the connection (if any) between c* from Problem 1.2 and '—*
from Problem 1.3?



m 1.5. Amartya Sen suggests the fllowing two properties for a choice finction
c

Ifrecd)andz e BC A, thenz € o(B). (a)
Ity e Band, for B C Ay € ¢(A), then ¢(B) C ¢(4). ().

Paraphrasing Sen, (a) says “If the best soccer player in the world is Brazilian,
he must be the best soccer player fiom Brazil.” And () says: “If the best soccer
player in the world is Brazilian, then every best soccer player from Brazil must
be one of the best soccer players in the world.”

Suppose (for simplicity) that X is finite. Show that choice coherence and finite
nonemptiness imply (o) and () and, conversely, that (a) and (f) together imply
choice coherence.

m *1.6. Suppose X = Rk+ for some k> 2, and we define x = (x;, ..., x;) = y =
Oy, - yp) ifx > y; that is, iffor each i = 1, ..., k, x;>y;. (This is known as the
Pareto ordering on Rk+; it plays an important role in the context of social choice
theory in Chapter 8.)

(a) Show that =~ is transitive but not complete.

(b) Characterize — defined ffom “— in the usual fashion; that is, x — y ifx =~
y and noty — x. Is — asymmetric? Is — negatively transitive? Prove your
assertions.

(c) Characterize ~ defined fiom “— in the usual fashion; that is, x ~y ifx = =

and V= e x. Is ~ reflexive? Symmetnc" Transitive? Prove your assertions.

m *1.7. Suppose that X = R3+, and we define weak preference by x = y if for at

least two out of the three components, x gives as much of the commodity as
does y. That is, ifx = (x;, x,, x3) and y = (1, 5, ¥3), then x '— y ifx; >y, for
two (or three) out ofi =1, 2, 3.



(a) Prove that this expression of weak preference is complete but not transitive.

(b) Define strict preference ffom these weak preferences by the usual rule: x — y
ifx '— y but noty '— x. Show that this rule is equivalent to the ©llowing
alternative: x ey ifx_gives strictly more than y in at least two components. Is
. asymmetric? Is “— negatively transitive?

(Hint: Before you start on the problem, figure out what it means ify is not
weakly preferred to x in terms of pairwise comparison of the components of x and
y. Once you have this, the problem isn’t too hard.)

m |.8. Prove Proposition 1.7.
m |.9. Prove Proposition 1.10.

m *1.10. Consider the fllowing preferences: X = [0, 1] x [0, 1], and (x;, x,) =
(x';, x%) if eitherx; >x'; or ifxy =x'| andx, >x'. These are called
lexicographic preferences, because they work something like alphabetical order;
to rank any two objects, the first component (letter) of each is compared, and
only if those first components agree are the second components considered.
Show that this preference relation is complete and transitive but does not have a
numerical representation.

m *1.11. Prove Proposition 1.14.

1.12. Propositions 1.12 and 1.15 guarantee that continuous preferences on RF -

have a utility representation. This problem aims to answer the question, Does
the construction of the utility representation implicit in the proof of these two
propositions provide a continuous utility function? (The answer is no, and the
question really is, What sort of utility function is produced?) Consider the
following example: Let X = [0, 1] (not quite the full positive orthant, but the
difference won’t be a problem), and let preferences be given by x '~ y ifx >y.

The proof of Proposition 1.12 requires a countable subset X*; so take for this set
the set of rational numbers, enumerated in the ©llowing order:



11 21 31 2

First prove that this set X* suits; that is, ifx — y, then x — x* — y for some

x* from X*. Then to the best of your ability, draw and/or describe the function u
produced by the proof of Proposition 1.15. This function u is quite
discontinuous; can you find a continuous function v that represents - ?

m *1.13. (This problem should only be attempted by students who were
enchanted by their course on real analysis.) Proposition 1.19 states that i
preferences '~ . generated from choice function ¢ are continuous on X = RF + and

if ¢ satisfies finite nonemptiness, choice coherence, and Assumption 1.16, then
od) #f§ for all compact sets 4. In Chapter 2, this is going to be an easy
corollary of a wonderful result known as Debreu’s Theorem, which shows that
continuous preferences can always be represented by a continuous function; with
Debreu’s Theorem in hand, proving Proposition 1.19 amounts to remembering
that continuous functions on nonempty and compact sets attain their supremum.
(Well, not quite. I’ve included Assumption 1.16 here for a reason. What is that
reason?) But suppose we try to prove Proposition 1.19 without Debreu’s
Theorem. One line of attack is to enlist Proposition 1.14: If preferences are
continuous, then for every x, the set {y € X : x = y} is (relatively, in X) open.
Use this to prove Proposition 1.19.

m 1.14. Conceming Proposition 1.21, suppose throughout that u and v are two
utility representations of (complete and transitive) preference relations -, and

=, on agiven set X.

(a) Show that iff': R — R is such that v(x) = flu(x)) for all x € X and iff is
strictly increasing on u(X), then =, and -  are identical.
(b) Show that iff": R — R is such that W(x) = flu(x)) for all x in X and if > , and

=, are identical, then f'is strictly increasing on u(X).

(c) Suppose that X = [0, o), W(x) = x, and



2 forx <1, and

u(x) = .
¢+l torx1.

Show that iff : R — R is such that v(x) = flu(x)) for all x, then f cannot be a
strictly increasing function on all of R.

(d) Suppose that *— , and '~ are the same. For each r € R, define X, = {x :
u(x) <r} and f{r) = sup{¥(x) : x € X,}. Prove that f composed with u is v (that
is, flu(x)) = W(x) for all x € X) and that f is strictly increasing on u(X). Prove
that /"is nondecreasing on all of R. Why, in the statement of Proposition 1.21,

does it talk about how f might have to be extended real-valued (that is, f{r) =
+00)?

m 1.15. As we observed on page 16, one approach to the “problem” that choice
on some subsets of a set X might be infinite is to restrict the domain of the
choice function ¢ to a collection 4 of subsets of X where it is reasonable to
assume that c(4) # (fj Porall4 € J‘i . So suppose, for a given set X, we have
a collection of nonempty subsets of X, denoted 4, and a choice function ¢ : A
—2X) (4 with the usual restriction that c(4) < A. Note that we just assumed
that o(4) # ) for all4 € A! Suppose that ¢ satisfies choice coherence, and
suppose that A4 contains all one-, two-, and three-clement subsets of X. Prove:
For every pair x, y € X, define x = .y if x € c({x, y}). Then for every A €
A, o(A)={x €4 :x =, yforally €A}. In words, as long as c satisfies
choice coherence and A contains all the one-, two-, and three-element sets
(and possibly others in addition), choice out of any 4 € J‘i is choice
according to the preferences that are revealed by choice from the one- and two-
clement subsets of X.°

m *1.16. Proposition 1.5 provides the testable restrictions of the standard model
of preference-driven choice for finite X; it takes a violation of either finite

nonemptiness or choice coherence to reject the theory. But this test requires tht
we have all the data provided by c(°); that is, we know c(4) in its entirety for



every nonempty subset of X.

Two problems arise if we really mean to test the theory empirically. First, we
will typically have data on c¢(4) for only some subsets of X. Second, ifc(4)
contains more than one element, we may only get to see one of those elements
at a time; we see what the consumer chooses in a particular instance, not
everything she would conceivably have been happy to choose.

(a) Show that the second of these problems can reduce the theory to a virtual
tautology: Assume that when we see x € A4 chosen flom 4, this doesn’t
preclude the possibility that one or more y € 4 with y #x is just as good as x.
Prove that in this case, no data that we see (as long as the consumer makes a
choice fiom every set of objects) ever contradict the preference-based choice
model. (This is a trick question. If you do not see the trick quickly, and you
will know ifyou do, do not waste a lot oftime on it.)

(b) Concerning the first problem, suppose that, for some (but not all) subsets 4
< X, we observe all of ¢(4). Show that these partial data about the function ¢
may satisfy choice coherence and still be inconsistent with the standard
preference-based choice model. (Hint: Suppose X has three elements and you
only see ¢(4) for all two-element subsets of X.)

(c) Continue to suppose that we know c(4) for some but not all subsets of X.
Specifically, suppose that we are given data on c(4) for a finite collection of
subsets of X, namely for 4;, ..., 4, for some finite integer n. From these data,

define
x=="yifx € (4;) and y € 4, Porsome k=1, ..., n, and
Xl yifx € o4y and y & o(4,) orsome k=1, .., n.
The superscript 7 is a mnemonic for “revealed.” Note that x ="y implies x ="
Y. -
Definition 1.22. The data {c(4;);k = 1, 2, .., n} violate the Simple

Generalized Axiom of Revealed Preference (or SGARP), if there exists a finite
set {xy, ..., X, } € X such that x;'="x;.| fori =1, .., m — 1 and ¥" =" X



The data satisfy SGARP if no such set can be produced.

Proposition 1.23. If the data {c(4;); k=1, 2, ..., n} violate SGARFE, then no
complete and transitive — gives rise (in the usual fashion) to these data. If
the data satisfy SGARE then a complete and transitive — can be produced to

rationalize the data.

Prove Proposition 1.23. (This is neither easy nor quick. But it is important for
things we do in Chapter 4, so you should at least read through the solution to
this problem that is provided in the Student’s Guide.)

m 1.17. In this problem, we consider an alternative theory to the standard
model, in which the consumer is unable/unwilling to make certain preference
judgments. We desire a theory along the fllowing lines: There are two
primitive relations that the consumer provides, strict preference — and positive
indifference ~. The following properties are held to be desirable in this theory:

1. s~ is asymmetric and transitive;

2. ~is reflexive, symmetric, and transitive;

3. ifx '—yand y~z, then x *— z; and

4. ifx~yand y %= z, then x =z
For all parts of this problem, assume that X, the set on which — and ~ are
defined, is a finite set.
(a) Prove that 1 through 4 imply: Ifx — y, then neither y ~ x nor x ~ y.
(b) Given %~ and ~ (defined for a finite set X) with the four properties listed,
construct a weak preference relationship =~ by x = y ifx — y orx ~y. Is this
weak preference relationship complete? Is it transitive?
(c) Suppose we begin with a primitive weak preference relationship '~ and

define and ~ ffom it in the usual manner: x > y ifx %— y and not y — x, and x ~



y ifx — y and y — x. What properties must — have so that *~ and ~ so

defined have propert;s 1 through 4?

(d) Suppose we have a function U : X — R and we define x > y if U(x) > U(y) +
1 and x ~y if U(x) = U(y). That is, indifferent bundles have the same utility; to
get strict preference, there must be a “large enough” utility difference between
the two bundles. Do “~ and ~ so constructed from U have any/all of the
properties 1 through 4?

(e) Suppose we have “~ and ~ satisfying 1 through 4 for a finite set X. Does
there exist a function U : X — R such that U(x) = U(y) if and only ifx ~y and
U(x) > U(y) + 1 ifand only ifx >y? To save you the effort of trying to prove
this, I will tell you that the answer is no, in general. Provide a counterexample.

(® (Good luck.) Can you devise an additional property or properties for *— and ~

such that we get precisely the sort of numerical representation described in part
d? (This is quite difficult; you may want to ask your instructor for a hint.)

’ 1

U If it isn’t clear to you that this restatement is equivalent to b in the
definition, you should verify it carefully. Stated in this alternative form, Mas-
Colell, Whinston, and Green (1995) call property b the weak axiom of revealed
preference, although their setting is a bit diferent; cf Problem 1.15. In previous
books, I have called property b Houthakker’s Axiom of Revealed Preference, but
I no longer believe this is a correct attribution; the first appearance of this
property for choice out of general sets (that is, outside the context of price-and-
income-generated budget sets) of which I am aware is Arrow (1959).

2 See Appendix 1.
3 This is the first time that the distance between two bundles is mentioned,
so to be very explicit: Suppose we are looking at the two bundles (10, 20, 30)

and (11, 18, 30) in R3. The most “natural” way to measure the distance
between them is Euclidean distance, the square root of the sum of the squares of
the distances for each component, or



\-":.':11 —10P + {20 — 187 + (30 — 302 = T+3-0=+F. But it is
equivalent in terms of all important topological properties, to measure the
distance as the sum of absolute values of the diflerences, component by
component—in this case, |11 10[+|20 18|+|30 30| = 1+2+0 = 3—or to
measure the distance as the maximum of the absolute values of the differences,
component by component, or max{|11 — 10|, |20 — 18|, |30 — 30|} = 2. For
each of these distance measures, two bundles are “close” if and only if they are
close in value, component by component; this is what makes these different
ways of measuring distance topologically equivalent. It is sometimes useful to
have these diferent ways of measuring distance—so-called norms or metrics—
because a particular proposition may be easier to prove using one rather than the
others. For more on this, and for many of the real analytic prerequisites of this
book, see Appendix 2.

4 The set Y is relatively open in another set X if Y is the intersection of X and
an open set in the “host space” of X. Since “— is assumed to be defined on Rk+,

which is a closed set in R, we need the notion of “relatively open” here. It is
perhaps worth noting, in addition, that while Definition 1.13 and this
proposition are constructed in terms of preferences '~ defined on Rk+, they both

generalize to binary relations defined on more general sets X. But if you are
sophisticated enough to know what I have in mind here, you probably already
realized that (and just how far we can push this form of the definition and the
proposition).

5 With refrence to fotnote 1, this is how Mas-Collel et al. tackle the
connection between choice and preference.



Chapter Two




Structural Properties of Preferences and Utility Functions

If you have taken a course in microeconomics, you almost surely have
encountered the picture of Figure 2.1, in which a consumer’s preferences are
depicted by indiference curves. Chapter 1’s categories of choice, preference, and
utility establish the basic justification for this sort of picture, but the picture as
typically drawn exhibits a number of characteristics that are not the product of
anything in Chapter 1. Specifically,

1. In the usual picture, indiference curves are just that, curves; they aren’t
“thick” in the sense of containing an open set of points.

2. Moving northeast (increasing either or both components) takes you to a
higher indiflerence curve.

3. Indiference curves are convex to the origin—more precisely, the set of
points as good as a given point is convex—which is important when it
comes to finding the consumer’s demand.

4. Indifrence curves are continuous; they don’t jump around or run out
except on the axes. (You may suspect, correctly, that this is connected to
continuity of preferences, which was discussed in Chapter 1.)

commodity 2

commodity 1
Figure 2.1. A consumer’s indiference curves

This chapter ultimately concemns these properties and others like them.



Throughout we consider the case X = R , for some integer k; preferences are
defined over bundles of a list of k& commodities, where the amount of each
commodity in any bundle is required to be nonnegative. Consumer preferences
are the findamental primitive; complete and transitive weak preferences '~ on X
are given, ffom which strict preferences *~ and indifference ~ are defined. Choice

per se will not be an issue in this chapter, but think of choice as related to
preferences in the fashion of Chapter 1.

This chapter makes extensive use of simple real analysis and the
mathematics of convexity of sets and functions. Appendices 2 and 3 survey what
you will need to know.

2.1. Monotonicity

In many cases, it is reasonable to assume that consumers prefer more to less—or
at least they do not strictly prefer less to more. We have the following
definitions and results:

Definition 2.1. Preferences '— are monotone (or nondecreasing) if for any
two bundles x and y such that x >y x ‘=— yl Preferences “— are strictly
monotone (or strictly increasing) if for any two bundles x and y such that x >
yandx#y, x .

A function u : X — R is nondecreasing if for any two bundles x and y such
that x >y, u(x) > u(y). And u is strictly increasing if for any two bundles x and
y such that x>y and x #y, u(x) > u(y).

Proposition 2.2. If u represents preferences '—, these preferences are
monotone if and only if u is nondecreasing, and these preferences are strictly

monotone if and only if u is strictly increasing.

The proofinvolves only a comparison of definitions and so is omitted.
Please take careful note of the implicit quantifiers in this result. The first part
says that if some nondecreasing u represents ~—, then '~ is monotone, while if

“— 1is monotone, then every u that represents '~ is nondecreasing. Therefore, if



some u that represents a consumer’s preferences is nondecreasing, every other u'
that represents these preferences is nondecreasing. The second half implies the
same sort of thing for strictly monotone preferences and strictly increasing utility
representations. Problem 2.1 asks you to clarify all subsequent results along
these lines.

Strictly monotone preferences for strict increases in the bundle

Also take carefil note of how monotonicity and strict monotonicity of
preferences are defined. In particular, note that in strict monotonicity, any
increase in any one of the components ofx (with no decreases in any
components) leads to a strict preference improvement. An “intermediate” sort of
monotonicity that is applied in some economic contexts is called “strict
monotonicity for strict increases in the bundle,” meaning that ifx >y (ifx
exceeds y in every component), then x *~ y. For instance, suppose preﬁerences
are represented by the utility fanction u(x) = min_; _; u,(x;), where each u; :

— R is a strictly increasing function. The corresponding preferences are not
strictly monotone (why?), but they are strictly monotone for strict increases in x
(why?). Compare w1th for instance, the classic Cobb-Douglas utility function

) = H iy Bl e ) The

corresponding preferences are not strictly monotone (why?), but they are strictly
monotone for strict increases in x (why?), and they are strictly monotone away
fom the axes in R¥ (why?).

Global and local insatiability

Some commodities, such as week-old fish or contaminated water, are noxious;
increased consumption makes the consumer worse off. Other goods are pleasant
only up to some limit; very sweet foods are examples. Hence, it is preferable to
avoid assuming strict monotonicity and even monotonicity if possible. But, for
many important results to come, we will need to assume that the consumer is
insatiable. Two versions of this assumption are used.

Definition 2.3.



a.  Preferences "~ are globally insatiable if, for every x € X, y ‘'~ x for
some other bundley € X.

b.  Preferences = are locally insatiable if, for every x € X and for every

number € > 0, there exists y € X that is no more than € distant from x,
such that y '~ x.

Note that becoming satiated in one commodity or positively disliking another
does not pose a problem for either global or local insatiability. All that is
needed, for instance, for local insatiability is that, starting ffom any
consumption bundle, the consumer would prefer a small increase (or decrease) in
some of the commodities. These properties do not translate in any meaningful
fashion into a statement about utility representations, except to restate the
definition in those terms.

It is perhaps worth noting that if preferences are both locally insatiable and
monotone, then they are (also) strictly monotone for strict increases in x, and if
they are strictly monotone for strict increases inx, then they are locally
insatiable. (You are asked to prove these two results and more besides in
Problem 2.6, with the solution provided in the Guide.)

2.2. Convexity

The next set of properties that we consider revolves around the notion of
convexity of preferences.

Definition 2.4.

a. Preferences '— are convex if for every pair x and y from X with x *— =

and for every number a € [0, 1], the bundle ax + (1 — a)y e g

b.  Preferences '~ are strictly convex if for every x and y, x #, such that x

“— ¥, and for everya € (0, 1), ax + (1 — a)y = y.

c.  Preferences '~ are semi-strictly convex if they are convex and if for every



pair x and y with x *— y and for every a € (0, 1), ax+ (1 — a)y = y.

Why would one ever think that prefrences are or should be convex? The story,
such as it is, relates to the classic ideal of ““moderation in all things.” Under the
assumption x = y, we know that in moving along the line segment fiom y to x

we will reach a point (x) at least as good as the point (y) ffom which we started.
The various forms of convexity are variations on the general notion that at each
step along this path, we are never worse off than where we began. That,
precisely, is convexity. Semi-strict convexity maintains that if x “— y, so we
will be better off at the end of the journey, then we are strictly better off at each
step than at the start. And strict convexity holds that even ifx ~y, if we are
strictly between the two, we are better off than at the extremes.

Convexity of preferences is sometimes defined a bit diferently. For each
pointx € X, define the set NWT(x) = {y €X :y =~ x}. NWT is a

mnemonic for No Worse Than.)

Proposition 2.5. Preferences — are convex if and only if, for every point x,

the set NWT(x) is convex.

The proofof this proposition is leff as an exercise.

The benefits of convexity

Convexity is very convenient mathematically, because of what it says about a
consumer who is choosing a consumption bundle from a convex set 4.

Proposition 2.6. If '— is convex, the set of *~— -best points in a convex set A—
that is, c>_(A)7is convex. (Of course, if A is infinite, c:,_(A) = is not
precll,fded.)3 If = is strictly convex, then c>_(A) contains at most one point; the

consumer either chooses a single bundle or none at all.

Proof. Ifboth x and y are in c>_(A), then x ~y. For any a € [0, 1], convexity of

A guarantees that axt(1 a)y € 4, and convexity of “— guarantees that ax+(1 a)y



“— x (and y). Sincex € c:;_(A), X % z for allz € 4, and so by transitivity,
axt(1 —a)y = z Prall z € 4; hence ax + (1 —a)y € c:;_(A). The set c>_(A) is
convex.

Suppose '~ is strictly convex and x and y are distinct points in c>_(A).

Then for any a € (0, 1), ax + (1 — a)y € A4 because 4 is convex and ax + (1 —
a)y = x, contradicting the “— -optimality ofx and y in 4.
- |

Convexity and numerical representations

Now for the consequences of convexity of preferences in terms of utility
representations. Begin with some definitions, which are repeated from Appendix
3:

Definition 2.7. A function f: A — R, where A is a convex set, is:

a. concave if forallx, y € A and a € [0, 1], flax + (1 —a)) >af(x) + (1 -
a)y);

b. strictly concave if for all x, y € A, x#y, and a € (0, 1), flax + (1 — a)y)
> afx) + (1 — a)ly);

c.  quasi-concave if for all x, y € A and a € [0, 1], flaxt(l1 —a)y) >

min{f(x), fv)};

d. semi-strictly quasi-concave if it is quasi-concave and, for all x, y € A4,

such that f(x) > fy) and a € (0, 1), flax + (1 — a)) > fy); and

a

strictly quasi-concave if for all x, y € A, x #y such that f(x) > f(y) and a
€ 0, D), flax+ (1 - ap) > /).

Proposition 2.8.

a. Preferences *— represented by a concave function u are convex.

Preferences represented by a strictly concave function u are strictly convex.



b.  Suppose that u represents preferences ‘=~ . The utility function u is quasi-

concave if and only if the preferences are convex; u is strictly quasi-

=
=
concave if and only if preferences =~ are strictly convex; and u is semi-
strictly quasi-concave if and only_[f preferences =~ are semi-strictly

convex.

It is semantically unfortunate that convex preferences go together with (quasi-)
concave utility functions. Things would be easier to remember if we talked
about concave preferences. But, in Proposition 2.6, convexity ofthe NWT sets
plays the crucial mathematical role. For this reason, preferences with convex
NWT sets are said to be convex, even though they have (quasi-) concave
representations.

Proof. 1 do not prove all of this, but here is enough to give you a taste of how
the proofs run. Suppose u represents “— and is concave. For any x, y € 4 such

that x — yand a € [0, 1], u(ax+(1 7_a)y) > au(x)+(1 a)u(y) > min{u(x), u(y)} =
u(y); hence ax + (1 —a)y '~ y, and preferences are convex. Ifu is only quasi-
concave, the inequality u(ax + (1 — a)y) > min{u(x), u(y)} is directly implied;
hence preferences are still convex.

Conversely, if preferences “— are convex and u represents —, then for any x,
y € X such that u(x) > u(y), x — y and thus foralla € [0, 1], ax + (1 —a)
— y; hence u(ax + (1 —a)y) >u(y) = min{u(x), u(y)}, and so u is quasi-

concave. And so on, for all the other parts. -

Note that part a of Proposition 2.8 runs in one direction only; if preferences
have a concave representation, they are convex. But convex preferences can have
numerical representations that are not concave. To see how, suppose that u is a
concave function that represents =~ . We know ffom Proposition 1.19 that if f :

R — R is a strictly increasing function, then the function v defined by wx) =
flu(x)) is another utility representation of —. But it is quite easy to construct,

for a given concave function u, a strictly increasing function f such that f{u(")) is



not concave. Create such an example, ifthis isn’t obvious to you.
In contrast, part b of the proposition says that every representation of convex
preferences '— is quasi-concave. Hence, we conclude that ifu is a quasi-concave

fanction and f'is strictly increasing, f(u(-)) is also quasi-concave.

One question is left open. We know (or, rather, you know if you constructed
the example requested two paragraphs ago) that convex preferences can have
numerical representations that are not concave functions. But perhaps we can
show that if preferences '— are convex, they admit at least one concave

numerical representation. In fact, we cannot show this; examples of convex
preferences that admit no concave representation can be constructed (see Problem
2.8).4

2.3. Continuity

In Chapter 1, continuity of preferences was defined and used as a sufficient
condition for showing that preferences on infinite sets can have utility
representations. But one might hope for more; namely, for a continuous utility
representation u. Continuity is not preserved by strictly increasing rescalings of
utility, so not every representation of continuous preferences will be continuous.
Indeed, the representation produced in the proofs of Propositions 1.12 and 1.15
is typically discontinuous (cf Problem 1.12). But some representations are
continuous:

Proposition 2.9 (Debreu’s Theorem). If a continuous function u represents
‘e, then ‘— is continuous. Conversely, if ‘— is continuous, it has a
S i

continuous utility representation.

As with convexity, continuity of preferences has economic implications.
Perhaps the most important is Proposition 1.19: If4 is a compact set and
preferences are continuous, then c:,_(A) is nonempty. In other words, some x €

A satisfies x — y for all y € 4. This can be proved directly; see the proof given

in the solution to Problem 1.13 in the Student$ Guide. But with Debreu’s
Theorem in hand, a simple proof is possible as long as you know the
mathematical result that a continuous function attains its supremum on a



compact set: If '— is continuous, it has a continuous representation u. Since u

is continuous, for some x* € A, u(x*) = max{u(y) : y € A4}, or u(x*) >u(y) for
all y € 4; hence x* '— yforall y € 4 and so x* € c:,_(A)‘

Proving Debreu’s Theorem

It is relatively easy to prove the first sentence in Debreu’s Theorem. Although it
is somewhat clumsy, I use the original definition of continuity provided in
Chapter 1. Ifx >y and u is the continuous representation of —, then u(x) >

u(y). Let & = u(x) — u(y). By standard properties of continuous finctions, we can
put balls of positive diameter around x and around y so that for all x’ in the ball
around x, |u(x) — u(x)| <4/3, and for all y’ in the ball around y, |u(y) — u(y) <
0/3. Therefore, for all x"and y' in the two respective balls, u(x') — u(y) = u(x’) —
u(x) + u@)- u@)t u@) - u(y) 2 u@) - u@) - @) —u@| - |u@) —u@) =] -
0/3 — /3 = 6/3; hence x' — y'. (The first inequality in this chain is justified as
follows: Since b >— |b| for all real numbers b, a + b+ c>a — |b| — || Prall a,
b, and ¢.)

Proving the second part of Debreu’s Theorem is relatively simple and
intuitive if we add a further assumption; namely, that preferences are monotone
and strictly monotone for strict increases in the consumption bundle.® Without
this additional assumption, the proof is quite difficult. So I will walk you
through the steps of the proof with the additional assumption, emphasizing
intuition and omitting details. Then I provide the details for the proofunder the
additional assumption. In the final problem of this chapter, I suggest how to
prove the result without the additional assumption. A sketch of the details is
then given in the Student’s Guide. Only readers with considerable mathematical
sophistication should attempt the problem or even try to follow the sketched
proofin the Guide.

In X = Rk, the ray consisting of x = (X1, Xy, ..., Xp) where x; = x, = ... = X,
is called the diagonal and is denoted by D. Let d denote the vector (1, 1, ..., 1)
so that, for & € R, ad is the diagonal vector (o, o, ..., @).

Forany x € RF 4, we let I(x) denote the indiflerence class ofx; that is, I(x) =
VEX:iy~x}



Now for the walk-through. There are five steps.
Step 1. Begin with a lemma:

Lemma 2.10. Suppose '— is continuous and x '~ x"'— x". Let ¢ : [0, 1] - X

be a continuous fumtlon with $(0) = x and ¢(l) = X" Then for some t € [0,

L ¢ ~x"

This has the ©llowing interpretation. Think of the function '~ as tracing a path

through X that starts at x = ¢(0) and ends at x" = ¢(1). Because ¢ is continuous,
this path is continuous. The lemma says that if preferences are continuous and x
“— x''=— x", this path must cross through I(x). Graphically, if you start in the

region above the indifference curve ofx’ and go continuously along any path
until you get to some point below this indifference curve (above and below
defined in terms of preference), then continuity ensures that at some point along
the way you must have crossed this indiference curve.

Step 2. Use the lemma and the assumption that preferences are monotone to
show that every bundle x € X is indifferent to some diagonal bundle y € D.
Graphically, every indiference curve cuts through the diagonal.

Step 3. Because preferences are strictly monotone for strict increases in the
bundle, ify and y' are any two bundles from D, then y *— y’ if and only ify is
further out along the diagonal. Therefore, if we define up, : D — R by up(ad) =
a, up represents — on D. Obviously, up, is continuous on D.

Step 4. Define u : X — R by the Pllowing procedure. For each x € X, let (a(x),
a(x), ..., a(x)) be the bundle along the diagonal indifferent to x. (Use Step € to
see that at least one diagonal bundle exists having this property and Step 3 to
show that there can be no more than one.) Then define u(x) = a(x). That is,
measure the “utility” of any bundle by following its indiference curve into the
diagonal, then set its utility equal to the place on the diagonal that is hit.

Step 5. Confirm that u so defined represents — (easy) and is continuous (a little



harder).
That does it. To contruct a continuous representation of preferences, we measure

how good x is by where its indifference curve hits the diagonal. Figure 2.2
shows this in a picture.

The diagonal

Figure 2.2. Debreu’s Theorem with an extra assumption. With the extra
assumption that preferences are monotone and strictly monotone along the
diagonal, Debreu’s Theorem is proved as follows. Any point such as x
lies somewhere between the two points marked on the diagonal with open
circles in terms of preference. Hence, by continuity, there is some point
o(x)d along the diagonal that is indifferent to x; in other words, the
indiference curve through x hits the diagonal at a(x)d. The value of a(x) is
unique because preference is strictly monotone along the diagonal.
Similarly, for a point such as y, we can find the point a(y)d along the
diagonal indiferent to y. Now a(x)d *~ a(y)d if and only ifa(x) > a(y);
strict monotonicity along the diagonal is used again. Hence by
transitivity, x *— y if and only ifa(x) > a(y). Therefore, if we set u(x) =
o(x) for each x, we have our utility function. We must prove that this a(-)
fanction is continuous, but that can be done, completing the proof



Now for the details. First we prove the lemma. For the finction ¢ as in the
statement of the lemma, if$(0) = x ~x'" or if ¢(1) = x" ~x’, there is nothing to
prove, so we can assume that x — x" %~ x". Let 7* be the set {t € [0, 1] : x’
“— J(#)}, and let #* = inf (T*). Note that 0 & T* because #(0) =x '~ x.
Moreover, since "~ is continuous, we can put an open ball around x such that
every point in the ball is strictly preferred to x', and so we know that #* > 0. On
the other hand, 1 € T*, since x' — ¢(1) = x".

I assert that ¢(¢*) ~x". To see this, note that for the sequence {#,} where ¢, =
(n — D)t*/n, t, < t* hence §(t,) =~ x', by construction. But then by continuity
ofthe fiinction ¢, lim,_, 4(z,) = ¢(¢*), so by continuity of preferences, ¢(¢*) =—
x". On the other hand, there is some (nonincreasing) sequence of values {t' }
where ¢/, € T* (therefore, x' s~ ¢(¢',)) for each n and lim, ¢/, = ¢*; this llows
from the definition of the infimum of a set of real numbers. By continuity of ¢,
lim,, ¢(¢',) = (¢*), and by continuity of preferences, x" '— @(t*). So x' '— $(t*)
' X', or x" ~ ¢(t*). This completes the proof of the lemma and step 1.

For Step 2, note that for any x = (x{, X,, ..., X), ifﬁ.—~ = max {xj;j =1, ..,
k} and 7 = min {xj;j =1, .., k}, then J7d — x '— [J'd because preferences
are monotone. By the lemma, some point on the line segment joining 7d to
Id is indiferent to x. This line segment is a piece ofthe diagonal D, and hence
some point on the diagonal is indifferent to x.

Step 3 is a simple matter of marshalling definitions. For Step 4, we must
show that for any x € X, a unique y € D satisfies y ~x. That y ~x for some y
€ D is Step 2. Suppose x ~y and x ~ ' for distinct points y and y’ fom D. By
transitivity, y ~ ', contradicting Step 3.

Finally we have Step 5. Suppose x and x’ are arbitrarily selected points from
X. Then x ~u(x)d € D, and x' ~u(x)d € D. By transitivity of '—, x '~ x' il
and only ifu(x)d '~ u(x)d which, by Step 3, is true if and only ifu(x) > u(x’).
Thus u gives a representation of — .

To show that u is continuous, suppose {x,} is a sequence in X with limit x.



We need to show that lim, u(x,) = u(x). If not, then for some 6 > 0 and some
subsequence {n'}, lim x,, = x, and either u(x,) > u(x) + ¢ for all n’ >N for some
large N, or u(x,) < u(x) —¢ for all n’ >N for some large N. Take the former
case. For all n' >N, x,, ~u(x,)d = (u(x) + ¢)d and thus, by continuity of
preferences, x '~ (u(x) + #)d. But x ~u(x)d, which would contradict Step 3.
The second cas:, where u(x,)) < u(x) — ¢ for all sufficiently large »', is similar. It

fllows that lim u(x,) = u(x), completing the proof with the extra assumptions.
|

2.4. Indifference Curve Diagrams

Consider the standard indiference curve diagram from intermediate
microeconomics, depicted in Figure 2.1. There are two commodities; that is, X

= R2+. The figure depicts a consumer’s indifference curves, the sets I(x) for

various x. At the start of this chapter, several characteristics of this diagram are
listed, which can now be justified.

1. The indiference classes are “thin” curves; they have no depth; they contain
no ball of positive radius. This is a consequence of local insatiability:
Suppose there was a ball of radius € wholely contained within some
indifference curve. Let x denote the center ofthe ball. If preferences are locally
insatiable, there is somey within €/2—that is, within the ball—that is
strictly preferred to x, a contradiction.

2. The indiference curves are strictly decreasing as we move from left to right.
In symbols, ify = (v}, ,) ~x = (x;, x,) and y; > x|, then y, <x,. This is
true if prefrences are strictly monotone: Ify; >x; andy, >x, (and
preferences are strictly monotone), then (), y,) = (x|, X,).

hed

The indifference curves are continuous and don’t “run out” or end abruptly
except on the boundaries of X. That is, if we start at any point x >x' and
follow a continuous path to a point x” < x', we cross the indiference curve of
x". This is true if preferences are monotone and continuous; if they are
monotone, x >x' >x" implies x *— x''— x"; hence Lemma 2.10 applies.

Continuity of preferences alone is insufficient; see Problem 2.7.



4. The indifference curves are strictly convex. That is, if distinct points x and
v lie along the same indifference curve and a € (0, 1), then ax + (1 —a)y
lies on a higher indiference curve. This, of course, is strict convexity.

The indiference curves in Figure 2.1 have one further property: They are
smooth, without kinks or sudden changes in derivatives. Nothing that we have
said or done in this chapter gets us to this sort of property, although we see in
later chapters that this property has some nice consequences.

2.5. Weak and Additive Separability

We now turn to properties of preferences and utility functions that are useful
analytically. These properties turn up frequently in examples, but they are rarely
justified. I hope that the discussion of these three properties convinces you that
they involve strong assumptions indeed.

The first sort of property is associated with the term separability. To
motivate this, suppose that consumption bundles x € Rlﬂr consist of bundles of
foodstuffs and other items. Specifically, for x = (x;, ..., x;), items 1 through ; are

levels of food, whilej + 1 through & (for somej < k) are items of clothing,
housing, recreation (other than eating), and so on. You might imagine that how
a consumer feels about various combinations of food—so many steaks, so much
corn, so many potatoes, so much lettuce—is all bound together in a
complicated fashion, but how the consumer feels about different combinations of
food doesn’t depend on the amounts of other items (clothing, housing) that she
consumes. If she prefers two steaks, two ears of corn, three potatoes, and no
lettuce, to one steak, five ears of comn, no potatoes, and three kilograms of
lettuce, she has those preferences whether she is wearing a skirt or a pair of
jeans.

A ton of notation is required to formalize this idea in reasonable generality.
Write K for the set {1, ..., k}; that is, K is the list of commodity names. For
any subset J S K, write x; for a commodity vector for the commodities named

in the listJ. So, for example, ifK = {1, 2, 3}, thinking of the three
commodities as cans of beer, bottles of wine, and loaves of bread, respectively,
and ifJ = {1, 3}, the bundle x; = (4, 5) means four cans of beer and five loaves

of bread. For any x € Rk+, write x; for the components ofx on the list J, and



we write R/, for the set of all such sub-consumption bundles (consisting only of
commodities ffom the list J). That is, ifx = (4, 3, 5) and J = {1, 3}, then x; =
(4, 5). Note that x is just the same as x, in this peculiar system of notation. IfJ
and J' are disjoint subsets of K, write (x;, x;/) for the commodity bundle with
commodity levels specified by x; for commodities named in list J and by x;, for

those named in list J'. ForJ & K, write J for the complement ofJ in K. Thus
(x7, x;c) is a completely specified commodity bundle (levels specified for every

commodity named on the list K = {1, ..., k}).

Definition 2.11. Let J|, ..., Jy be a list of N mutually exclusive subsets of K.
That is, J, N J,, = [ for n#m. Preferences — are weakly separable into Jj,

‘ P J g
o ] =1, .. N, d fiom e, and L' J and
Iy if for any n Xy, and * Jﬂ R_ an jﬂ
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n
To paraphrase, think of J, as the list of food indices. Then, if (xJn, )q,cn) b
(x'Jn, X Jcn), this means that the food sub-bundle x,, is prefrred (weakly) to the
food sub-bundle x’Jn when the full bundle is filled out with xje, When we
compare (xjn, x'Jcn) and (x'Jn, x’Jcn), we are changing how we fill out the full

bundle, but we are comparing the same two food sub-bundles. The definition
says that the comparison of food sub-bundles doesn’t change with the filling-
out. And it says more besides: The same property holds separately for each of
the sub-bundle lists Jj, ..., Jy.

Proposition 2.12. Suppose that u represents ‘—. Preferences '— weakly

separable into J| through Jy, if and only if there exist functions u,, : Rj'br — R



(for n = 1,.., N) and for un(RJrJ") the images set of
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such that v is strictly increasing in its first N arguments, and
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It looks much worse than it is. Think of N = 2, J; being the list of food items,
and J, being the list of, say, clothing items. Therefore, (/; U J2)C is the list of

all nonfood, nonclothing items. Suppose we have preferences that are weakly
separable into food and clothing items. Then we can find sub-utility functions
uy and u, defined for food and clothing sub-bundles, respectively, so that overall
utility is given by a function of food sub-utility, clothing sub-utility, and the
amounts of the other items, in a way that is strictly increasing in both food and
clothing sub-utility levels. (All that stuff about the image set is just saying that
we are only defining v for values that are needed for the representation.)

Proof. If we have a utility representation u taking this form, weak separability is

shown ollows: For any
s W
by B Bl and 5o, (L1, Lyo) > (z , xje)
implies that H;;(IJ } e (.I-J which 1mplles
- i .

(L7 ;rr"JC ) Ay, -’H}c ) orall x/c .

For the converse, suppose u represents "=, and “— is weakly separable into
J| through Jy. Fix some bundle x*. For each 7 n, define a function u” ‘R, R
by u (x, ) = u(xy , x*C ). For (ry, ..., ry) such thatr, =u,(x;,) for somex,,
(for each 1), and for any x, where K" is used as temporary shorthand for (J; U ...
UJN)C, define w(ry, ..., ry xg) = ulxy, .., Xy Xg). The key step in the proot
is to show that this definition doesn’t depend on the particular x T, chosen (as

long as u,,(x Jn) =r,). That is, if {x';,} is another collection of sub-bundles with



un(x'Jn) = r, for each n, then u(le, o Xpy Xg) = u' g, .., x’JN, Xg). This is

where weak separability comes in:
u((x g, .:;:j:f )) = un(z1,) = un(z] ) = u((z]_, J;EE})
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Note that there are n indiference relations here, forn = 1, ..., N, and that the
right-hand term in the n th of them is the lefi-hand term in the n + 1. Thus the
lef-hand term in the first is indifferent to the right-hand term in the N th, by
transitivity of indiference. This is

(le, o X xKr)~(x’Jl, x’JN Xx)s

which is just what we want.

It remains to show that v so defined is strictly increasing in its first N
arguments. I leave this to you. Begin with the hypothesis that un(xJ )y=r,=r,
= u,(x; ) for each n, with a strict inequality for some n. You have to show

n
under this hypothesis that (le, o Xpy Xy) e (le, s X’JN Xg), and
(therefore) u((le, o Xpy X)) > u((x Jp o XJN Xg)).- To do this, repeat the

argument in the previous paragraph, but with a chain of :— s and one '— in



place ofall the ~s.
|

Next comes additive and strong separability. The property on preferences is
called strong separability; additive separability refers to the structure of the
representation.

Definition 2.13. Let J|, ..., Jy partition K. That is, J, NJ, = i for n £m,

and Jy U ... U Jy= K. Preferences '— are strongly separable in J,, ..., Jy if
for every L =J, U J,, U .. J, for some set of indices {ny, ..., nj} drawn
from {1, ..., N}, (x;, x;C) = (x';, x;C) for some x;C implies that (x;, x';C) =

(x'p, x',C) for all x';C.

In words, we have strong separability when we have weak separability not only
for the individual groups of commodities (food, clothing, shelter, etc.), but also
for all unions formed out of those groups (food and clothing together are weakly
separable fiom everything else). Not only is the consumer’s preference over od
items independent of what he wears and what quality housing he has, but the
trade-offs he makes between food and clothing are independent of his housing,
the trade-of§ he makes between food and housing are independent of his
clothing, and the trade-ofS§ he makes between housing and clothing are
independent of his food. All this independence adds up to a very nice result.
Before giving the result, we need a minor definition. Suppose we have
strong (or even weak) separability with commodity index sets./; through Jy.

For each ofthe J,

» we say that — is nontrivial on J, if there exists a pair of.J,

sub-bundles x T and x’Jn and some full bundle x* such that (x o x* JCn) o (x’Jn,
x* JC)- (Weak separability tells us that the bundle x* used to “fill out” the sub-

bundles is actually irrelevant to this definition.)

Proposition 2.14. Suppose preferences '~ are continuous and strongly
separable in J| through Jy. Suppose further that — is nontrivial on at least

three of the commodity index sets J; through Jy. (ﬁerejfare, N >3 is certainly



required.) Then we can find continuous functions u, : R +j" — R such that

N
W) =) Un(rs,)

n=1

is a utility representation of *=—. Conversely, if preferences are represented by

a N utility function u taking the form
N L . . J,
En:l Uy (2 Jnjr _-{ﬂ? Uy o e R, ther

preferences are strongly separable.

In words, with strong separability into three or more sets of indices, we can find
an additively separable utility function, where to find the utility of an entire
bundle, we sum the sub-utilities of the sub-bundles (for special sub-utility
functions).

One direction—that an additively separable representation implies strong
separability of preferences—is easy to prove, but the converse is difficult. I
won’t try even to sketch its proof, see Debreu (1960).

2.6. Quasi-linearity

Quasi-linearity is a functional form for utility that is extensively used in
applications. It involves a commodity space, RX, that is divided into two

pieces, a single distinguished commodity, and all the others. We will assume
that the distinguished commodity is the K th, and we will write commodity
bundles as (v, m), wherex € R.X~ ! gives the levels of all but the last
commodity, and m € R, gives the last. The symbol m is a mnemonic for
money: In the usual application of quasi-linearity, the consumer’s preferences are
specified for a (usually small) subset of the commodities and money leff over to
buy the others; that is, x gives the levels of consumption of the small subset,
and m the amount of money lefft over to buy everything else. Since this is
overwhelmingly the standard application of quasi-linearity, the terminology
“money left over” is used here.



Definition 2.15. Preferences '— on RK+ are quasi-linear in the K th

commodity if they can be repres;ted by a utility function of the form
Ulx, m) = u(x) + m,

for some sub-utility function u : R +K’1 — R. In such cases, we also say that

the utility function U has a quasi-linear form.

In words, the utility ofa bundle (x, m) is the sub-utility of the sub-bundle x plus
the amount m of money left over.

Proposition 2.16. Preferences ‘— on RK,. have a quasi-linear representation

in the K th commodity if and onEif the following properties hold:

a. Foreveryx € R+K’1 and m and m' € R, (x, m) = (x, m') if and only if

m>m'

b. For every x and x' € R+K71 and m and m' € R, (x, m) '— (x, m') if and

only if (x, m+ m") = (X', m'+ m") for all m" € R,.
c. Foreveryx and x' € R+K’1, (x, m) ~ (x', m") for some m and m' € R,.

The proof is left as an exercise. See Problem 2.11 for hints (which make the
proof fairly simple), and the Student’s Guide for the detailed proof

Property b is the key in terms of economics. It says that trade-of between
the other goods and money don’t change with equal increases in the amount of
money; in other words, there are no “wealth effects.” If the consumer is willing
to trade x and $10 to get x’, he is willing to make this same net trade whether it
leaves him with $0 (hence (x), 0) “— (x, 10)) or it leaves him with $100,000

(hence (x, 100,000) *— (x lOO,_OlO)). This powerful property simplifies

analysis tremendously in applications. Of course, it is also quite a dubious
property on first principles; if you use it in applications, you must justify doing
S0.



While we have emphasized b, the roles of a and ¢ should be discussed
briefly. Property a says that more money is better than less, which is easy to
accept. Property ¢ combines two ideas: First, no matter how much better than x'
is the sub-bundle x, some amount of money compensates for getting x’ instead of
x. That is, notwithstanding the old cliché, money can buy happiness.
Moreover, money can be used to calibrate the difierence in worth of any two sub-
bundles of the other goods; by adjusting the amount of money used in
compensation, we can always get precise indifference.

Back in Chapter 1, we said that it didn’t make sense to ascribe meaning to
diferences in utility; that is, ifu(x, m) —u(x|, m') > u(x, m') —ux", m"), we
shouldn’t conclude that the difference from (x, m) to (x', m') is “bigger” than the
diference from (x, m’) to (x", m"). But if our utility finction is quasi-linear,
diferences in utility on that particular scale have a very concrete interpretation:
u(x, m) —u(x, m') is the amount of money left over needed to compensate the
consumer for going from (x, m) to (x, m"). That is, letting m* = u(x, m) — u(x’,
m'), (x, m) ~ (x, m'+ m*).

2.7. Homotheticity

The final special property for preferences and utility fanctions that we explore is
homotheticity.

Definition 2.17. Preferences '— are homothetic if x '— y implies Ax ‘= Ay
forallx, y € Xand A >0.

Homotheticity is not a very natural property intuitively, at least in a world
where there are some goods that promote the consumer’s well-being (taken in
moderation) and others that are and remain “fan.” To take an example, imagine
that k = € and the two goods are cod liver oil (measured in teaspoons) and
manna (measured in kilograms). Imagine that this particular form of manna lacks
a single mineral that promotes health, a mineral that can be obtained from a
single teaspoon of cod liver oil. But except for that mineral, manna is much
more desirable than cod liver oil, being tastier. Then it is reasonable to suppose
that (1, 2) — (0.2, 2.8) (where the first component is the amount of cod liver
oil, measured in teaspoons)—the consumer prefers to get her teaspoon of cod
liver oil—and yet (5, 10) — (1, 14)—this consumer doesn’t want more than



one teaspoon of the oil.

Despite its lack of intuitive appeal, homotheticity has its value for some
types of analysis, so we investigate its consequences for utility representations.
We begin with mathematical definitions.

Definitions 2.18. 4 subset A oka is a coneif x € A implies Ax € A for all
scalars A > 0.

If A is a cone in Rk, a function [ : A — R is homogenous of degree o. > 0 if
fx) = A%x) for all . > 0 and x € A. In the case a = 1, we often say (simply)
that the function is homogeneous.

Proposition 2.19. Preferences '~ are continuous and homothetic if and only if

they can be represented by a continuous and homogeneous utility function.
The proofis left for you to do as Problem 2.12.

Bibliographic Notes

Most of the results in this chapter are relatively straightforward; there is no
particular place to send you for further reading. But the exceptions are Debreu’s
Theorem on continuous representations of continuous preferences, and
Proposition 2.14, on strong and additive separability, which is also due to
Debreu. The classic references are Debreu (1954) and (1960), respectively.

Problems

m *2.1. The form-ofrepresentation results that are at the heart of this chapter
take different forms because corresponding to each — are many different
representing utility functions U. In one direction, we have results such as
Preferences "= are monotone implies all utility function representations are
nondecreasing; but we also have results for different properties of = and U
where the all is replaced by some. In the converse direction, a typical result is
that Preferences are monotone is implied if some utility function representation

is nondecreasing. So that you have all such results compiled in one place, fill
in the table in Table 2.1 following the example in the first line.



is

Preferences are implies - implied ity function representation(s) isfare
i
moncton dl | some nondecraasing
strictly monotone strictly increasing
convex concave
strictly convex 777 strictly concave
CoNvex quasi-concave

semisticlly convex

semistrictly quasi-concave

strictly convex strictly quask-concave
continuous continuous
weakly separable weakly separable form (see note 2)
strongly separable additively separable (see note 3)
such hatthey satsy quasklinear form (see note 4)

the 3 properties in Prop. 2,16

continuous and
homothetic (see note 5)

continuous and
homogeneous




Table 2.1. Problem 2.1: Fill in the table (but see the notes below first)

Notes: 1. Do not attempt to fill in the box marked ????. You were not given
this information in the chapter. (In fact, I don’t know what is correct to put in
this box.)

the form

2 Lu takes
v(u(zy), wlzy),. .., un(zy,), TR\ (JLU...UT )

for v strictly increasing 1r1 1ts first N arguments.

3. utakestheﬁ)rmzn ! un(?L;}

4. U takes the form u(x) + m.
5. In this row, a maintained hypothesis is that preferences are continuous.

| 2.2. Proposition 2.6 leaves open the unhappy possibility that, for convex
preferences and a convex set 4, c>_(A) = [ ; there are no = -best elements of 4.
This is a real possibility: Consider 4 = (1, 5) or 4 = (3, ) as subsets of R,
with strictly monotone preferences. But suppose 4 is convex and compact?
Show by example that even if preferences are strictly convex, it is possible that ¢
A) = for a compact set 4. (Hint: Examples are possible with X = R,.
. Il p p. p +

Obviously, these preferences cannot be continuous, and the real point of this
problem is to have you think about how convexity of preferences connects with
continuity of preferences.)

| *2.3. Prove that if prefrences =— are globally insatiable and semi-strictly
convex, then they are locally insatiable. Show by example that this isn’t true for
globally insatiable preferences that are only convex.

m 2.4. Prove Proposition 2.5.

m *2.5. (a) Give an example of a concave finction u :RI‘Jr — R (for some

integer k) and a strictly increasing function /' : R — R such that f{u(-)) is not
concave. (Examples with k= 1 are certainly possible.)



(b) Give an example of a continuous function u : RE 4+ — R (for some integer k)
and a strictly increasing function /: R — R such that f{u(-)) is not continuous.

m *2.6. Prove that continuous prefrences are strictly monotone for strict
increases in all components—that is, ifx and y are such that x; > y; for all 7, then
x > y—ifand only if preferences are monotone and locally insatiable. What can
you say along these lines if we remove the assumption that preferences are
continuous?

W 2.7. Most pictures of indifference curves have the property that ifx >x" >x",
then any continuous path ffom x to x” cuts through the indifference curve ofx’.
That is, if¢ : [0, 1] — R"+ is a continuous function with ¢(0) = x and ¢(1) =
x", and ifx >x" >x", then there is some ¢ € [0, 1] such that ¢(r) ~x" We
remarked in the text that this is true if preferences are monotone and continuous;
if preferences are monotone, x > x’'>x" implies x = x' %= x", then continuity of

preferences combined with Lemma 2.10 gives the result. Show by example that
continuity of preferences is insufficient for this result; if you can, show that even
if preferences are continuous and locally insatiable, this result fails.

W 2.8. Part a is not too hard if you know the required mathematics. Part b is
extremely difficult.

(a) Consider the following two utility functions defined on RZJr :

T113 if myry < 4,
Ui(zy,22)=4 4 if4 < 7110 < 8, and
F1Lr — 4 if8 i i



125 it 215 < 4,

ifryas =4and 21 > 19,
5 itzy2; =4 and 2; < x5, and
T+l itegr >4

Uz(y, 22) =

Show that the corresponding two preferences are both convex. Show that neither
could be represented by a concave utility function. Are either or both of the
corresponding preferences semi-strictly convex? Are either or both of the
corresponding preferences continuous?

(b) There are preferences that are both semi-strictly convex and continuous but
that don’t admit any concave numerical representations. One such utility
fanction is

2l+zx3) 1 if: . .

: ) 1 ifr+2 <1, and

Us(zy, 1) = { 2o el
T+ ite +o > 1

Prove that preferences given by this utility function cannot be represented by any
concave function.

W *2.9. (a) Consider the utility finction on X = R2+ given by u(x) = u((x;, x,))
= ax; + fpx,, fora and f strictly positive constants. What do the indifference

curves corresponding to this utility function look like? Are these preferences
monotone? Strictly monotone? Locally insatiable? Convex? Strictly convex?
Semi-strictly convex? Continuous?

(b) Consider the utility function on X = RZJr given by u(x) =u((x;, x,)) =
min{x;/a, x,/f}, for a and f§ strictly positive constants. What do the indifference

curves corresponding to this utility function look like? Are these preferences
monotone? Strictly monotone? Locally insatiable? Convex? Strictly convex?



Semi-strictly convex? Continuous?

W 2.10. (This one is for math jocks.) In Chapter 1, we proved that continuous
preferences had a representation in two steps. We showed (in the proof of
Proposition 1.15) that if preferences '~ defined on Rk+ are continuous, then the
set of points with rational coefficients (which we can write as Q‘+, where O
stands for the rationals) is order-dense, in the sense of Proposition 1.12. And
then we relied on the proof of Proposition 1.12. This means that, if we let {ql,
4%, ...} be an ennumeration onk+ (we know that Q is countable, so QI‘+ is also

countable), and we define

1
Tl —
)= D,
{gPeQkx—qt}

Pprx € RF 4, then u Rk — R represents — . Prove that, 1f “— is continuous

(and complete and transitive), then u defined in this manner is upper semi-
continuous.

| *2.11. Prove Proposition 2.16. If you would like a challenge, try to prove it
without reading the following hint, which gives the game away. (Hint: Fix
some x'. For each x, use property ¢ ffom the proposition to find m and m' such
that (x, m) ~ (x', m'). Define u(x) = m' — m.)

W 2.12. Prove Proposition 2.19. It simplifies matters to assume that the
preferences involved are strictly monotone, as well as continuous, and you may
make this assumption if you wish, although it isn’t necessary to the proof
(Hint: Given this assumption, mimic the proof of Debreu’s Theorem given in
this chapter.)

m 2.13. Supposek = 2, and we have a consumer whose preferences are
continuous and strictly monotone. If you are given a single indiference curve for



this consumer, how much of her preferences can you construct if her preferences
are also homothetic? What if in addition to being strictly monotone and
continuous, her preferences are quasi-linear in the second commodity?

W *2.14. The objective in this problem is to prove Debreu’s Theorem without
the extra assumption that preferences are monotone and strictly monotone along
the diagonal. (The extra assumption was stated a bit diferently in the text, but
this is what it comes down to.) The proof for the general case takes a fair
amount of work, but if you are able to do real analysis, there is nothing
particularly fancy about it. I outline the proof here; in the Student$ Guide, 1
provide a few more of the details.

To set the stage, let us briefly review the two places we used the extra
assumption in the proof given in the text. First, it was used to ensure that for
every x € X, there exist y and y' om D such that y *— x — " This, together

with Lemma 2.10, ensured that we could find for cach x € X some o(x)d € D
such that x ~ a(x)d. Thus once we produced a numerical representation of “— on

D, we could extend it to all of X. Second, the assumption made it very e;y to
produce a continuous utility finction on the diagonal: We could simply define
Up(ad) = a.

The general proof will ©llow this basic line of attack. First, we produce a one-
dimensional continuous “curve,” which we denote by Z, such that for all x € X
there exists z and z’ ffom Z such that z %~ x = z"

(a) You should begin by producing such a Z. Use the fact that — has a

numerical representation (albeit not necessarily continuous) and think in terms
of a “curve” Z that looks something like a connect-the-dots diagram. (Further
hint: Consider the following two-by-two collection of cases: For V" a numerical
representation, either sup V' (Z) is attained or is not, and either infV (Z) is
attained or is not. If both the sup and inf are attained, your connect-the-dots
picture will consist of one line segment. If either is not attained, you will have
countably many dots to connect.)

(b) Now apply the lemma to conclude that for every x € X there is some z(x) €



Z such that x ~ z(x).

(c) Using part (b), prove that ifU, is a continuous representation of =
restricted to Z, you can extend Uy to all of X to get a continuous representation
of — on X.

So what remains is to produce a continuous representation on Z.

Let Z' be a countable dense subset of Z. IfZ contains a best and/or a worst
element, be sure that these are in Z'. Ennumerate Z' as {z'|, z', ...}. Take each
z' in turn and define Uy, (z') as Bllows: Ifz’, ~z’, form <n, then U, (z) =
Uy (z',,) (which was defined in an earlier step). Ifz’, %= z’, for all m < n, let U,
() =max, ., Uy (') + 1. Ifz =2z’ forallm <n, let Uy (z',) = min,, _,
Uy (2',) — 1. And ifz', satisfies 2/, '— 2/, '~ Z:n form, p <n butz' is
indifferent to nothing that has lower index, define

P . a! \,_ /
Ul = min {Up (e im < n,2, = 20} 4 max {Uzp (2 im < n, 2 - 20 |

iy ) i
That is, givez’, a value halfivay between the values of next lowest and next
highest points whose values have already been assigned.

(d) Show that this produces a numerical representation of — on Z".

(e) Let I be the smallest interval containing U, (z') for all z' € Z'. Show that
the set of values {r = U, (z'); z' € Z'} is dense in L.

(f) Take any z € Z and let {z',} be a sequence out of Z’ with limit z. Show that
lim sup, Uy (z',) = lim inf, U, (z',). Then show that lim Uy (z',) (which we
now know exists) is finite. (Hint: Use continuity of '~ and steps (d) and (e).)



(g) Define Uy : Z — R by UAz) = lim Uy (z',) for any sequence {z',} out ofZ'
with limit z. Why is this well defined? (Invoke (f).) Prove that U, so defined
gives a continuous representation of = on Z.

W 2.15. (This problem requires that you know some measure theory.) In
Chapter 1, we proved the existence of numerical representations of complete and
transitive preferences on finite sets by counting the size of NBT(x) and, on
countable sets, by computing X, ¢ Npr(y) @(), Where {a(y) 1y € X} was a

summable sequence of numbers. In roughly that spirit, suppose that X = RF ™
— is complete, transitive, and continuous, and x4 is a finite and positive

measure on X such that u(A) > 0 for every (measurable) set A that has positive
Lebesgue measure. In this setting, define u : X — R by u(x) = u(NBT(x)). Prove
that u is a utility representation of — and is upper semi-continuous, but not

necessarily continuous. Can you find further conditions on — that will imply

that u is continuous?

’ 1

! For k -dimensional vectors x and y in RF, x >y means each component ofx
is at least as large as the corresponding component of y. When every component
ofx is strictly larger than the corresponding component of y, we will write x > y.

2 In mathematics, “monotone” could mean increasing or decreasing. It would
be more precise to say that preferences with the property of the definition are
monotonically increasing (or nondecreasing). Indeed, while in this chapter I use
“monotone” for preferences and “nondecreasing” for utility functions, later in the
book I use “nondecreasing” more offen than “monotone” and “strictly
increasing” more offen than “strictly monotone” when describing preferences.

3 Both by a strict interpretation of the definition and by convention, the
empty set (f is a convex set.

4 In Chapter 6, we give an intuitive property about the consumer’s preferences
on lotteries of consumption bundles that ensures these preferences admit a



concave numerical representation.
5 I remind you that, throughout this chapter, we are assuming that the
domain for preferences is Rk+, the positive orthant of finite-dimensional

Euclidean space. Many of the results in this chapter generalize beyond this
setting, and many of the proofs apply to more general settings directly. But in
proving Debreu’s Theorem, we use some of the topological properties of
Euclidean space in ways that may not be obvious to you if you don’t
understand all the details.

6 If preferences are both continuous and strictly monotone for strict increases
inx, then they are monotone—cf Problem 2.6—so in fact in the context of
Debreu’s Theorem, where preferences are continuous, the assumption that
preferences are monotone is redundant once we assume that they are strictly
monotone for strict increases.



Chapter Three




Basics of Consumer Demand

The prototypical application in economics of the material fom Chapters 1 and 2
is to consumer demand in a competitive marketplace. The individual consumer
chooses a consumption bundle x € Rk+, subject to a budget constraint. This

chapter gives the basics of the model; many fllowing chapters contribute further
pieces to this story.

3.1. The Consumer’s Problem

The consumer’s problem—the focus of this chapter and many to llow—is
formulated as follows:

The space of consumption bundles X is Rk+, the positive orthant of k-
dimensional Euclidean space, where &, a positive integer, is the number of
commodities.

The consumer has a fixed amount of money to spend on her consumption
bundle. This amount of money is commonly referred to as the consumer’s
income and is denoted here by y.1 We assume y is nonnegative throughout.
The price of a unit of the j th commodity is denoted by P forj=1,2, ..
k. We write p for a typical price vector (py, ..., py). Throughout this chapter,
all prices are assumed to be strictly positive; therefore p is an element of
RkH, the strictly positive orthant in RF.

The consumer takes prices as given. She assumes she can buy any amount
of a commodity at its market price, without changing that market price.
Therefore, if prices are given by the price vector p = (py, py, ..., py), the
total cost of the commodity bundle x = (xy, X, ..., x;) is pyx; + pyxy + ... +
PiXy = p - x, where p - x is the dot or scalar or inner product of the two k -
vectors p and x.

The consumer operates under the constraint that the bundle she purchases
costs no more than the income she has to spend, orp - x <y. Also, the
consumer is constrained to consume nonnegative amounts of each
commodity, or x > 0. For given prices p and income y, we denote by B(p, )



the set {x € R/‘Jr :p - x <y}, calling this the budget set or the set of
budget-feasible consumption bundles.

*  Subject to these constraints, the consumer endeavors to select the best
bundle she can, according to her preferences. Following developments in
Chapter 1, we assume that the consumer has complete and transitive
preferences *~—, which are always continuous in this chapter. This guarantees

the existence of a continuous finction # on the domain RkJr that represents
“— (cf Proposition 2.9).

Therefore, the consumer’s problem (abbreviated CP) given prices p, income y,
and her utility function u, is to choose x to

Maximuze w(x), subject top-z < yandx > 0. (CP)

Note that three things “define” a particular CP: the consumer’s utility function
u, the price vector p, and the consumer’s income y.

You are probably familiar with the picture that goes with the CP; for
purposes of comparison with other pictures later, I reproduce it here. For a two-
commodity world, preferences are depicted by indiference curves, and the budget
set is a triangle with vertices at (0, 0), (/p;, 0), and (0, y/p,). The consumer
tries to find the highest indiference curve that still intersects the budget set.
Figure 3.1 captures all this.
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Figure 3.1. The consumer’s problem (or the CP) in a picture

The assumption of constant prices
The assumption that the consumer faces constant prices—she pays Py for Y
units of good j, no matter what is the size of’ i and no matter what are her other
consumption decisions—has two components.

1. The consumer believes (and it is in fact true in the model) that her

consumption decisions are on such a small scale that they do not affect the
prices P that are charged for various commodities.

2. The consumer receives no quantity discounts, nor does she pay a premium
for large-scale purchases. In the jargon of economics, she faces linear prices.
Being “small” in the sense of the previous paragraph doesn’t guarantee this;



my personal household consumption of water and telephone services is
small on the scale of my local water utility and phone company, yet I pay
an increasing amount on the margin the more water I use, and the average
cost to me of phone services decreases with the number of phone calls I
make. Very small consumers sometimes face nonlinear prices.

Despite these examples, linear prices are the starting point for most
economic theory, rationalized by the possibility of resale. If a single
consumer could lower her average price by purchasing more and more, some
consumer (the rationale goes) would purchase in bulk and resell the goods
to other consumers at a profit. Ifa single consumer faces higher prices as her
scale of purchases increases, she would get friends to purchase in small lots
and resell to her. To maintain nonlinear prices, the vendor must be able to
control resale (which both my water utility and phone company can do, to a
large extent). For now we assume the vendor cannot control resale and, for
that reason if for no other, prices are linear.

Savings

The CP makes no provision for savings. The consumer has an amount of
income y to spend, every penny of which is spent on consumption if this
maximizes utility. This is neither reasonable nor descriptive. A consumer
taking a trip to her local grocery rarely spends every penny in her pocket or in
her checking account on groceries. Considerations of savings and trips to one
store among many take us into the realm of dynamic choice, which we study
only in Chapter 7. For now, think of CP as describing the shopping expedition
of a mythical consumer who makes one trip to one store in her lifetime, then
spends the rest of her lift consuming her one-time purchases.

3.2. Basic Facts about the CP

Figure 3.1 is the typical picture drawn for the CP but is special in three ways:
1. The CP has a solution.
2. The solution is unique.

3. The solution involves spending all the consumer’s income.



Drawing a picture where the CP has no solution is a challenge—you need very
strange (essentially, discontinuous) indiflerence curves—but it is easy to draw
pictures where the CP has multiple solutions or where the solutions involve
spending less than y; see Figures 3.2a, b, and c.

On the other hand, it is easy to give conditions that guarantee 1 through 3.

Proposition 3.1. Fix a continuous utility function u, and consider the CP for
various strictly positive prices p and nonnegative income levels y.

indifference curve

indifference curves
with the point in the
center the paint of

: highest ufiity

incifference curve

commodity 2

commodity 2
commodity 2

et )
commody 1 commodity 1
@ (b) 5

Figure 3.2. Variations on Figure 3.1. In panel a, the CP has two
solutions because preferences are not convex. In panel b, preferences are
convex but not strictly convex, and the CP has a convex set of solutions.
In panel c, preferences are not locally insatiable, and the solution to the
CP is interior to the budget set (that is, at the solution, the consumer
spends less than y).

commodity 1

a. If x is a solution of the CP for a given p and y, then x is also a solution
Sfor (Ap, Ay), for any strictly positive scalar A.

b.  The CP for each p and y has at least one solution; some x € B(p, y)
maximizes u(x) over B(p, y).



C.

If u is quasi-concave (preferences are convex), the set of solutions to the
CP for any p and y is convex. If u is strictly quasi-concave (if preferences
are strictly convex), then the CP for each p and y has a unique solution.

d. If preferences are locally insatiable and if x is a solution to the CP at (p,

), thenp - x=y.

Proof.

a.

For any strictly positive A, p - x <y ifand only ifAp - x < Ay; hence B(p, y)
= B(/p, Ay). The objective function doesn’t change with 1; hence the set of
solutions for (p, y) is the same as the set of solutions for (Ap, 1y).

If we show that B(p, y) is nonempty and compact (closed and bounded),
then b ollows from the continuity of u. Nonemptiness of B(p, y) is trivial;
0 € B(p, y) forall p and y. To show that B(p, y) is compact, note first that
X — p - x is a continuous function. Hence for any convergent sequence {x'}
of points ffom B(p, y) with limit x, p-x" <y and " > 0 for each n imply that
px <yandx > 0. Therefore, x € B(p, y), and B(p, ») is closed. Let 0 =
min {p; i = 1, ..., k}; since prices are strictly positive, 6 > 0. Ifx € B(p,
¥), then p - x <y; hence for each i, py; <y (because the cost of all other
goods cannot be negative), so each x; < y/p; <y/6. Therefore ifx € B(p, y),

x; <y/6 forall i, and B(p, y) is bounded.

The constraint set B(p, y) is convex because convex combinations of
nonnegative vectors are nonnegative and the function p-x is linear in x.
Therefore, ifpx<yandp - x'<y, foranya € [0, 1], p - (ax + (1 —a)x') =
ap-x)+ (A -a)p - x")<ay+ (1 —a)y =y Now apply either Proposition
2.6 or Proposition A3.21.

Suppose preferences are locally insatiable and x solves the CP, but p - x <
y.Letfp=y—-p-x,y=max {p;i=1, ., kj, and € = B/(ky). By local
insatiability, some x’ within € ofx is strictly preferred to x; that is, u(x’) >
u(x). But
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. That is, x" is affordable at prices b with wealth y, and it is strictly preferred
to x, contradicting the supposed optimality ofx for prices p and income y.

A simple picture goes with the proof of part d. See Figure 3.3 and the
accompanying caption.

~the point

---=-the ball around =

budget line

Figure 3.3. The picture for the proof of Proposition 3.1d. Ifp - x <y, then
x lies “below” the budget line, and we can put a ball of strictly positive
radius around x such that p - x’ <y for every x’ inside the ball. Local
insatiability ensures that no matter how small the radius of this ball, as
long as it is strictly positive, some (nonnegative) point inside the ball
must be strictly better than x, which contradicts the optimality ofx at the
given prices and income.

3.3. The Marshallian Demand Correspondence and Indirect Utility
Function

Fix the utility function # for a particular consumer. Assume u is continuous,
reflecting this consumer’s continuous preferences. For each set of strictly
positive prices p and nonnegative income level y, we have a version of the CP



for this consumer. By virtue of Proposition 3.1b, we know that the CP has a
solution. Let D(p, y) denote the set of solutions for the fixed u, as a function ofp
and y, and let v(p, y) denote the value of the optimal solution; that is, Wp, y) =
u(x*) for any x* € D(p, y). (D is a mnemonic for demand.)

Definition 3.2. Fixing u, the set D(p, y) is called Marshallian demand at
prices p and income y, and the correspondence (p, y) = D(p, y) is called the
Marshallian demand correspondence. The number Wp, y) is called the
indirect utility at p and ), and the function (p, y) — Wp, y) is called the
indirect utility function.

Proposition 3.3 (Berge’s Theorem applied to the consumer’s problem).

a. Forallp € Rk++, y=>0,and 2 > 0, D(p, y) =DW@p, 1y) and Wp, y) =
vip, 2Y).

b. The Marshallian demand correspondence is upper semi-continuous. If, for
some open set of prices and income, Marshallian demand is singleton
valued (that is, the CP has a unique solution for all price-income pairs
inside that open set), then the function that describes the solution as a
Sfunction of (p, y) is a continuous function.

c.  The indirect utility function is continuous.

If the notion of a correspondence or an upper semi-continuous correspondence is
new to you, or if you have never heard of Berge’s Theorem, also known as the
Theorem of the Maximum, please consult Appendix 4 before attempting to
understand either the statement of this proposition or its proof

Proof. Part a of the proposition is a simple corollary of Proposition 3.1a. As for
parts b and c, these come from a straightforward application of Berge’s
Theorem, given in Appendix 4 as Proposition A4.7. Since this is our first
application of this important general result, I spell out the details: The
consumer’s problem is a parametric constrained maximization problem

maximize u(x), subject to x € B(p, y).



The variable in the problem is x, and the parameter is the vector (p, ). Berge’s
Theorem tells us that the solution correspondence is nonempty valued if for
each set of parameters, the constraint set is nonempty and compact and the
objective function is continuous in the variables; moreover, the solution-set
cotrespondence is upper semi-continuous and the value-ofthe-solution finction
is continuous, both in the parameters, as long as the objective function is
jointly continuous in the variables and the parameters and the constraint-set
correspondence is locally bounded and continuous in the parameters. (The
version of Berge’s Theorem given in Appendix 4 is somewhat more robust than
this simple rendition, but the simple rendition is adequate for now.)

In this particular application, the objective function is independent of the
parameters and assumed continuous in the variables. Therefore, the objective
fanction presents no problem. We already showed that each B(p, y) is nonempty
and compact. So once we show that (p, y) = B(p, ) is a continuous and locally
bounded correspondence, the conditions of Berge’s Theorem are met, and its
conclusions are established. To begin with local boundedness, fix a pair (p, ),
and let

.il||—'L

£ = min Pi-

O =l.....k

Forall (p’, y') within € of (p, y), x € B(p’, »') must solve p’ - x <y'. Since in
the sum p' - x each term is nonnegative and y' <y + €, this inequality implies
t h a tpy < (14 + E); hence

r; < (y+e)/p;. But p} P —€ = ‘pq- = 2¢

; therefore x; < (y + €)/(2€), which provides a uniform bound for x € B(p', ).

Continuity of the constraint correspondence is shown by proving separately
that the correspondence is upper and lower semi-continuous. To show upper
semi-continuity (having shown local boundedness), we take a sequence {(x", p",
Y} with ¥ € B(p", ') for each n and with limit {(x, p, »)}.> (We are using
superscripts here because subscripts denote components of the vectors x and p.)
Of course, X > 0 for each n, and since the positive orthant is closed, this
implies that x > 0. Moreover, p" - X" <)/ for each n; using continuity of the dot

-,



product, this implies that the limit of the lefi-hand side, p - x, is less than or
equal to the limit ofthe right-hand side, y. Therefore, p - x <y and x € B(p, ).
This establishes upper semi-continuity.

To show lower semi-continuity, for each sequence {(p”, y")} with limit (p,
y) and a point x € B(p, ), we must produce a sequence {x"} with limit x and
such that X' € B(p", /') for each n. Ify = 0, thenx = 0 (prices are strictly
positive); therefore X' = 0 for all n works. Ifx = 0, the same choice of X" will do.
Therefore, we can assume that y > 0, x # 0 and, by going far enough out in the
sequence, that the p” - x are uniformly bounded away from zero. Let

n yn p-x

B
y pt-x

Since ) — y and p" — p, continuity of the dot product implies that xX* — x. It
remains to show that X' € B(p", y/'). Nonnegativity ofx” is no problem, since
¥ is just a scale copy of x. Moreover,

) T b P
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3.4. Solving the CP with Calculus

When economists build models populated by consumers, it is common practice
to specify the individual consumer’s utility function and to solve the CP
analytically, using calculus. (It is also common to begin directly with the
consumer’s demand function, or even with a demand function that aggregates
the demands of a population of consumers. We discuss these alternative
practices in later chapters.) To build and work with such models, you must be
able to carry out this sort of analytical exercise. In this section, we discuss how
this is done, and (more important to future developments) how to interpret
pieces of the exercise.

The CP is a problem of constrained optimization: A numerical objective



fanction (utility) is to be maximized, subject to some inequality constraints (the
budget constraint, and all variables nonnegative). Assuming the objective
function and constraint functions are differentiable and otherwise well behaved,
the standard theory of constrained optimization establishes necessary and
sufficient conditions for a solution. The rudiments of the general theory (or,
rather, those rudiments that are germane to applications in this book) are given
in Appendix 5. Adapting them to this context yields the following.

Definition 3.4. Consider the CP for a differentiable utility function u, strictly
positive prices p, and strictly positive income . 34 consumption bundle x* is
said to satisfy the (first-order/complementary-slackness) optimality conditions
for the problem if:

a. p-x*<y;

b. for some A >0,
du
!'C}I_;; o+

< Ap; for each j,

with equality if x;> 0; and
c. ifp x*<y, then ) =0.

Proposition 3.5. Consider the CP for a differentiable utility function u,
strictly positive prices p, and strictly positive income y.

a. If x* is a solution of this problem, then the optimality conditions must
hold at x*.

b.  If u is concave and if x* satisfies the optimality conditions, then x* solves
the CP.

To paraphrase, the optimality conditions are necessary for a solution, and they
are sufficient for concave utility fanctions.*



Compared to the general form of first-order/complementary-slackness
conditions given in Appendix 5, the optimality conditions are given here in
somewhat compact form. In case you are new to constrained optimization, it
may help to derive these specific conditions following the step-by-step recipe
from the appendix.

Step 1. Form the Lagrangian. Let A be the multiplier on the budget constraint
p-x<yand let u; (forj = 1, ..., k) be the multiplier on the constraint x> 0.
The Lagrangian is

k k

wxr)+ A |y — ij-.r}- +Z;zj;rj.

=1 31
Step 2. Obtain the first-order conditions for the X variables. These are

(il i
F —Apj +p;=0, or a—u}- = A

a 1

Step 3. List all constraints, including constraints on the multipliers. The
multipliers are all constrained to be nonnegative and, of course, the solution
must obey the original constraints p - x <y and x > 0.

Step 4. Give the complementary-slackness conditions:
l(yfp-x)=Oand,u,~xj=Oﬁ)rj= 1, .., k

Now to simplify these conditions. Since u ;2 0, the first-order condition for

X; can be rewritten
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where the difference ).pj - Eju/i]xj is just Hje The complementary-slackness
condition uyx; = 0 is, therefore, /lpj = E]u/fpgf if)gj > 0. Finally, the
complementary-slackness condition A(y — p - x) = 0 can be rephrased, Ify > p -
x, then 2 = 0. This gives the specific optimality conditions defined above.

Parts a and b of the proposition, therefore, correspond to Propositions A5.3
and A5.4, respectively. To apply Proposition A5.3, we must ensure that the
constraint qualification holds. The details are leff to you; strict positivity ofp
and y is the key. To apply Proposition A5.4, we must check that the constraint
functions are all quasi-convex. Here they are linear, so we have no problems
with quasi-convexity. A fw remarks on the formulation are in order:

1. Diferentiability of the utility function means continuous differentiability.
Similar results can be given for utility functions that have lefi- and right-
hand (partial) derivatives everywhere; affer you absorb the discussion of the
intuition of these conditions that ©llows, you may wish to formulate this
sort of result.

g

Differentiability also entails finite partial derivatives everywhere.

had

On the boundaries of the consumption region—wherexj = 0 for some or

several j—continuous differentiability is defined as follows: Right-hand
partial derivatives along the boundary exist, are continuous, and are
approached continuously by partial derivatives along paths from the interior.
It is common in parametric specifications of utility functions for u to have
infinite partial derivatives along the boundary. For example, the simplest
standard parameterization of a consumer’sIic utility function is the Cobb-
e . _ i ."—“j - B e ’

Douglas utility function, 'U,I{.Tj s Hj:l 'l'_,'; z tor 0 = nj‘
Supposing, as is common, that o<1, the partial derivative ofu in X at x;
= 0 (and all other components strictly positive) is infinity.

Infinite derivatives at the boundary (only) pose no problem in the
following sense. If E]u/t]xj =oo at x* the optimality condition requires



that A = . Therefore, p - x* = y. Assuming y > 0, this means that x*j >0
for some j. Assuming u doesn’t have infinite partial derivatives in x; for x*j
> 0, the optimality conditions could not hold for; with4i =o0, a

contradiction. In other words, when in specific parameterizations (such as
Cobb-Douglas utility) the finite-derivative condition is violated along the
boundary of the positive orthant, solutions to the optimality conditions are

never found along those boundaries.

A simple example: Cobb-Douglas utility

To see Proposition 3.5 in action, imagine a consumer whose utility function
takes the Cobb-Douglas form

K
u(xr) = H x;?,

j=l

for strictly positive constants a; through a;. Note that iij = 0 for any
componentj ofx, u(x) = 0, whereas (for any strictly positive y) positive
expenditure on each good gives strictly positive utility; we know a priori that
the solution x* to the CP for any p and y > 0 will be strictly positive in all
components. Therefore, ifA is the multiplier on the budget constraint, the
combined first-order, complementary-slackness optimality condition for x; is

i u
dx.

3 L™

=Py A.
Evaluating the partial derivative for this utility finction u, we get

a;(z)™ H{arj—;}“‘f = PjA,

3'#i



and multiplying the right and left sides ofthis equation by x*j, we find that (as a
necessary condition for optimality),

o HCE" Y = p; T, sk
It is clear that A > 0. (Hence we know that the consumer must spend all ofy,

although we know this on first principles anyway, since u is locally insatiable.)
We can divide both sides by 4 and get, as a necessary condition for optimality,

u(z*)  Pirj
A o

The lefi-hand side of this last equation is independent of; (is the same for every
/), so a necessary condition for optimality is

Py Py Py
€ (i oy
or
(e . ¥
pyxy = ——p;z;, forall j and j'.
kg

The consumer must spend all ofher income, or
Y=pxt+ pox®, + L pxt

In this last equation, substitute (aj,/a,-)p,.x*j for Py x*j, (forj'=1, ..., k), to gety
=2 (ay/a)px™*; which can be solved for x*; :
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In other words, the monetary expenditure pjx*j on good; at the solution is

proportional to y, the level of income, where the constant of proportionality is
obtained by “normalizing” the coeflicient % (dividing o by Zjr o, 80 that the
sum of'the constants of proportionality is one).

Do we know this is the solution? We do indeed, and two arguments show
this. First, iij & < 1, the function u is concave, and the optimality conditions
are sufficient for a solution. “What,” you may be asking, “if the sum exceeds
1?”” Then replace % by aj/ z aj,ﬁ This is a strictly monotone transformation of
the utility fanction (why?), so it gives the same preferences and choices (hence
the same solutions to the CP), and the transformed utility function is concave.
(Of course, the solution x* we derived is unchanged by this transformation.)

Or, if that argument doesn’t appeal to you, try this one: Because u is
continuous, we know that the CP has a solution. We know that the optimality
conditions are necessary; they must hold at the solution. But the optimality
conditions uniquely yield the solution x* derived above. So this uniquely
derived x* must be the solution.

Note in passing that a Cobb-Douglas consumer has remarkably simple
demand. For each good, a fixed percentage of her income goes to purchase that
good, regardless of the price of the good or the prices of other goods. Of course,
the price of the good enters into the amount of the good purchased: If (say) o /

2o = 0.1, then 10% of the consumer’s income goes to good 1, and the

amount of good 1 purchased is 0.1y/p;. But the amount of good 1 purchased is
utterly independent of the prices of other goods.

Because of the simplicity of demand by a Cobb-Douglas consumer, this
particular utility fanction is much favored by economists who wish to illustrate
simple points about consumer demand and who need little flexibility in the
actual proper-ties of demand. On the other hand, it is remarkably inflexible for
some  purposes; notably, as a parametric family of utility functions



(parameterized by the coefficients o), it will rarely fit actual consumer demand
very well. For econometric purposes, it is too simple. In the problems, you are
asked to solve the CP for other utility functions that give slightly more flexible
demand. The cost of this flexibility, of course, is that you must to work a bit
harder to solve the CP.

Interpreting the optimality conditions

If we know that 2 > 0, the optimality conditions can be rewritten as follows: If
goods 7 and j are consumed in positive amounts at the optimum,

it Ou
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In words, the ratio of marginal utilities equals the ratio of prices. This may be
familiar to you flom intermediate microeconomics, or you may recall The
marginal rate of substitution of good i for good j (along an indifference curve)
equals the ratio of their prices, which is the same thing. Even if1 = 0 we have
this relationship, as long as we recognize that when A = 0, the first-order
conditions read that E]u/c]xl- = 0 for goods that are consumed in positive
amounts, and we interpret 0/0 as being any number we wish.

Whether or not 1A > 0, yet another way to rewrite and interpret the
optimality conditions involves the ratio of E]u/ E]xj to p;. Let MU; denote E]u/
If]xf and let MU (x) denote this partial derivative evaluated at the point x. MU;
here is a mnemonic for the marginal utility of good j, or the rate at which
utility accrues per unit increase in the amount of good j consumed.

Call the ratio MU/(x)/pj the bang for the buck of good j (at the point x). The
reason for this name is: Suppose the consumer spends $1 more on good j, where
I use the dollar as the numeraire. $1 more spent on good j means an increase ol
l/p/- in the amount of good; consumed. To a first-order approximation, this
means (MU/(x))(I/pj) more units of utility. Hence MU/(x)/pj is the bang in
utility for the (extra) buck spent on good ;.



The optimality conditions can be paraphrased: Iij and x; are both strictly
positive, then MUj(x)/p/ = MU; (x)/pl-, =4, and iij > 0 and Xy = 0, then
MU/(x)/p]- =1> MU; (x)/p/,. Or, in words, at the solution to the CP, the bangs
for the buck of goods consumed in strictly positive amounts should be equal,
and these bangs for the buck must be at least as large as the bangs for the buck
of goods whose level of consumption is zero. Or, to rephrase in words one final
time, if good j is consumed at a strictly positive level, its bang for the buck
must be at least as large as the bang for the buck of any other good (whether
consumed or not).

Why? Suppose this failed. That is, suppose that at some feasible
(nonnegative and budget-feasible) consumption bundle x*, x*j > 0, but the bang

for the buck of good j was strictly less than that of some other good, say good i.
Consider spending d > 0 dollars less on good j and ¢ dollars more on good i,
where 0 is small. This means 6/p/~ less of good j, and 6/p; more of good i.
Because x*j > (0, for some small enough J, this reduction in the consumption of
good j is feasible; the constraint X2 0 won’t be violated. (None of the other
nonnegativity constraints can be violated, since we are adding to the amount of
good i consumed, and we are leaving the rest alone.) Also, this small change
does not affect budget fasibility; we are spending just as much as we were
before. By Taylor’s Theorem, we know that the impact of this variation on the
level ofutility is to move us from u(x*) to

3 J -
w(z*) _l_h_.['uj[lt} — — |+ MU (") — | +o(d).
P bi

(If you don’t know Taylor’s Theorem or the mathematical language of little-
o’s, all that this says is, The utility level changes, to a first-order
approximation, by the change in the amount of good; times its marginal
utility, plus the change in the amount in good i times its marginal utility.)
Therefore, the change in utility is
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MU;(z*) MU, (")
s i

By assumption, MUx*)/p; > MU/(x*)/p;, and so this is strictly positive for

+ o(d).

sufficiently small 0. Therefore, x* cannot be the solution to the consumer’s
problem.

Note well, if you can cross i’s and dot t’s when it comes to using Taylor’s
Theorem, we just proved Proposition 3.5a: The argument just given says that i
the optimality conditions fail at x*, then x* cannot be a solution to the CP.
This is the contrapositive to, The optimality conditions are necessary at a
solution. (Ifp - x* <y, then the bangs for the buck must all be 0, which is 4.
Can you see how to adapt the argument above to show this?) And whether you
can cross i’s and dot t’s, the intuition should be apparent: If good j has a lower
bang for the buck than good 7 at x*, the consumer will do better to decrease the
consumption of good j and spend the money saved on good i. The only thing
that can prevent this is if the consumption of good j cannot be decreased, which
is to say, ifx*; = 0.

Let me ring one further change on this. Suppose the consumer has y to
spend and, at the given prices, finds that the optimal consumption bundle for
her is x*. Suppose that we then give her $1 more to spend (where you should
think of §1 as small on the scale of y). What should she do with the extra $1?
To a first-order approximation, she can divide the extra $1 among all the goods
j with x*;> 0 in any fashion she pleases, and she is close to the optimum. More

precisely, if she allocates any of the extra $1 to a good whose bang for the buck
is less than the bang for the buck of some other good, she will be doing less
well than she might. Now recall that 1, the multiplier on the budget constraint,
is (by the optimality conditions) just this maximal bang for the buck. The
marginal utility accruing from an extra bit of income is just the multiplier on
the budget constraint. 1f you increase the consumer’s income by $3 and if she
spends the extra optimally, her utility will rise by 3A, to a first-order
approximation. (If you have had prior exposure to constrained optimization, you
may recall that the multiplier on a constraint is the “shadow value” on that
constraint; that is, the rate at which the objective function improves per unit



relaxation of the constraint. If you have never seen or heard this, you have now
seen it in a specific context.)

Assuming you understand intuitively the previous paragraph, let me now
warn you, it isn’t quite correct. Assuming u is diferentiable, the loose and
informal argument given there can be tightened down to a formal proof (with a
formal statement) i we know that the optimal solution to the CP at income y +
1 is “close” to the solution at income level y. The reason we need to know this
is that the argument, when fleshed out, works (only) for small changes in
consumption levels ffom x* But what if the solution jumps discontinuously?
(Can the solution jump discontinuously?) This takes us deeply into the
mathematics of constrained optimization problems, which I want to leave alone
until Chapter 10. So for now, I hope the intuition behind the previous paragraph
is clear, and (as well) that you recognize that, as an argument that is relying on
calculus, it is only about how the objective function responds to local variations
in the consumption bundle.

Differentiability of utility

Throughout this section, we have assumed thatu is (continuously)
differentiable. Nothing like this appeared in Chapter 1 or 2, so a few remarks on
this assumption are in order.

Diffrentiability ofu is not easy to justify. If u is diferentiable, for strictly
increasing / : R — R, w(x) = f{u(x)) may not be, so no property of preferences®
will guarantee differentiability of every numerical representation. Of course, the
same is true about continuity; we are content in that case with the result that i
preferences are continuous, they have at least one continuous representation.
Similarly, we would be content with If preferences have property (fill in the
blank), they have a continuously differentiable representation. Unhappily, 1
know of no reasonably intuitive property that fills the blank and makes this
statement correct.”

Diffrentiability ofu, then, should be regarded solely as an analytical
convenience; one that holds in all manner of parametric specifications of utility
that economists use, but not one with a firm axiomatic basis.

Bibliographic Notes



The theory of the consumer is one of the cornerstones of microeconomic theory,
and a full bibliographic note would run for many pages. I’m unable to do full
justice to the subject here, and so will refrain ffom trying altogether.

Almost every textbook on microeconomic theory will have a chapter or
more devoted to the subject. My recommendations here (and throughout the rest
of our discussion of these ideas) are: Kreps (2004) for readers who desire an
“intermediate micro” level treatment of the subject; Mas-Colell, Whinston, and
Green (1995) and Varian (1992) for alternative treatments at roughly the level of
this book; and Katzner (1970) for a full-blown, all-the-math development.

Problems

m *3.1. Imagine a consumer whose preferences are strictly decreasing. That is, if
x; <x'; for all commodities 7, with a strict inequality for at least one commodity,

then x %~ x" The solution to the CP for this consumer, for any prices p and

income level y, is clearly to consume the bundle 0 = (0, 0, ..., 0). Hence ffom
part d of Proposition 3.1, we know these preferences are not locally insatiable.
Give a direct argument for this implication.

m 3-2. Suppose that in a world with k& goods, a locally insatiable consumer’s
preferences '~ have the following property. Her preferences are strictly convex in

the first j goods. That is, ifx! and »? are two distinct bundles of goods with x!
s Pandx! =22 Pralli=j+ 1,/ +2, .., K, and ifa € (0, 1), then ax' +

(1 — @)@ '— x*. And she has no use whatsoever fr the goods with index above
j. Ifx! and x* are two bundles of goods with xll- = le- fori=1, 2, ../, then X!

~ X, Show that if prices are strictly positive, this consumer’s solution to the
CP is unique.

k
m 3.3. (a) Suppose that u[i} - E_j:l -'Iiz'. ]_11(_131.'} , where §; > 0.
Fixing prices p and income y, what is the consumer’s demand?

(b) How does your answer to part a compare with demand by a consumer with
Cobb-Douglas utility?



(c) In footnote 5, I suggested that you look at this problem. What was I
thinking of? How could you rewrite the paragraph in the text that contains this
footnote, in view of your answer to part b?

| *3.4. Suppose that k= 3, u(x) = In(x; + 2) + € In(x, + 3) + 4 In(x; + 2). I

prices are p; = 2, p, = 3, and p3 = 1, what does the consumer demand at y = 5?
Aty =16.4? At y=100?

K .
358 that 4, (" _” 1 4, for strictl
] uppose  thaf 'H-li.]‘.:l o _1 -_;.) v strictly
positive constants f; and nonnegative constants Y (/ = 1, ..., k). Describe a

procedure (graphical or algebraic) to find the consumer’s demand at prices p and
income y. (Hint: Warming up to this problem with Problem 3.4 might help.)

m *3.6. (@) Suppose that H-[ir} - z;;___ QT for strictly positive

constants a. What is consumer demand at prices p and income y ?

(b) Suppose that u(x) = min {axy, ..., oyx;}, for strictly positive constants .

What is consumer demand at prices p and income y ? (Note that this ut111ty
function isn’t differentiable, so you can’t use Proposition 3.5.)

m 3.7- Suppose that'i,l'{.‘l.’} s [ER L0 ,{;t]la.‘-:, fr strictly

positive constants o o, j=1, .k, and 4 < 1, u #0. What is consumer demand

at prices p and income y? What happens when u = 1? What happens as u
approaches zero? (This utility function is called the constant elasticity of
substitution, or CES, utility function.)

*3.8. Suppose ar v o k ., where each u;
u PPose Qoo iy ) = ¥y e () uj
is strictly concave, continuously difrentiable, and strictly increasing, with
u'{0) < oo. Devise a graphical procedure for finding x(p, y), given p and y.



m *39. Suppose (. .., Tk) = Z‘ff:]l ug (1) + g
where each u; is strictly concave, continuously differentiable, and strictly
increasing, and with u’(0) < oo. Describe to the fullest extent you can what this
consumer will demand at prices p and income level y.

m 3-10. (@) Which of the utility finctions in the problems 3.3 through 3.9
represent homothetic preferences?

(b) Complete and prove the following proposition: Suppose a consumer has
homothetic preferences. If she demands x at prices p and income y (i.e., if x
solves the CP at these prices and income level), then her demand at prices p
and income y'is...

m 3.11. Proposition 3.5b says that for concave utility functions u, the
optimality conditions are sufficient for solutions of the CP; i.e., if for a given x
there exists a multiplier 2 such that x and A satisfy the optimality conditions,
then x solves the CP. But as we saw in Chapter 2, concavity ofu is not
“natural”; convexity of preferences goes more naturally with quasi-concavity of
the utility function.

a) Suppose u is quasi-concave and If_.i“/ t_.ixl > 0, at all levels of consumption.

Prove that the combined first-order/complementary-slackness conditions are
sufficient to guarantee optimality.

(b) Show by example that ifu is locally insatiable and quasi-concave, being a
solution of the combined first-order/complementary-slackness conditions is not
sufficient to guarantee optimality. (Hint: The simplest example you can give is
for the case k= 1!)

m *3.12. It is a useful thing to know, a priori, that the multiplier 4 found in
solving the CP will be strictly positive. Give an example to show that this is
something to worry about; specifically, give a utility function u that is strictly
increasing and represents strictly convex preferences, strictly positive prices p,
and a strictly positive income level yO, such that at the unique solution to the



CP at prices p and income y, the multiplier A must be zero. (Hint: This can be
done with a very small number of commodities.)

m 3-13. Suppose that u is not continuously difierentiable, but it is “piecewise
diferentiable.” That is, at every x € Rk+ and for every j = 1, ..., k, u has right-
and leff-hand partial derivatives in X (You should assume that u is continuous.)

In the spirit of Proposition 3.5a, give necessary conditions for an optimal
solution to the CP.

m 3-14. Robinson Crusoe is marooned on a desert island with only a supply e
of'seedcorn. He will be rescued two years ffom now (he knows this), and so his
problem is to allocate the e units of seedcorn between current consumption and
planting for second-period consumption. If he plants x units of com, he will get
back a crop of'size f(x), for a function f that is nondecreasing and satisfies f{0) =
0. So ifhe chooses to plant x units, his consumption stream will be e — x in the
first period and f(x) in the second, for total utility Ule —x, f(x)), and his
maximization problem is

Maximize Ule — x, f(x)) in the variable x, subject to 0 <x <e.

a.  What can you tell me about the existence and character ofa solution to this
problem, for fixed ¢? That is, make whatever assumptions you need to
prove that a solution exists.

b. Find assumptions that guarantee that the set of solutions to this problem is
convex.

c. Find assumptions that guarantee that this problem has a unique solution.
(There is more than one answer to this part, so see if you can find multiple
answers. )

d. Let We) be the value of the solution as a function ofe and let X*(e) be the
set of solutions. What can you tell me (about continuity, upper- and/or
lower-semicontinuity) about v and X* ? That is, find assumptions that
guarantee that v is a continuous finction and X* is an upper semi-
continuous correspondence. How about assumptions that make X* lower



semi-continuous?

’ 1

I The use of the term “income” is traditional, although *“wealth” or

“resources” may give more appropriate connotations.

2 In proving upper and lower semi-continuity, we look at sequences of
parameters—in this case, sequences {p”, )'}—that converge to points in the
domain of the correspondence. Therefore, the limit price vector p here must be
strictly positive.

3 Ify = 0, the problem is trivial. The only budget-fasible bundle is x = 0.

4 See Problem 3.11 for a partial extension of part b to quasi-concave utility
fanctions.

3 Or see Problem 3.3.

6 Except x '~ y forall x and y.

7 (1) The blank can be filled in by asking the consumer for her preferences
over gambles with prizes in X; see Chapters 5 and 6. (2) If preferences can be
represented by a concave function u, then we are almost there: A concave
fanction u is “almost everywhere” continuously diferentiable. But convexity of
— is insufficient to guarantee that a concave u can be found to represent '~ ,

and in any case this doesn’t give us differentiability everywhere.



Chapter Four




Revealed Preference and Afriat’s Theorem

This chapter concerns a consumer who, we hypothesize, is solving the CP for a
number of different prices and incomes. We observe the consumer’s choices and
ask, What can we say about this consumer? In particular, are her choices
consistent with the standard model of preference-driven, utility-maximizing
choice? What patterns can we expect to see in the choices she makes, as we
(say) vary one price only or her level of income? The emphasis here is on what
can be discerned fiom a finite number of actual choices; Chapter 11 concerns the
entire array of choices the consumer might make, for every possible level of
income and every possible set of prices.

4.1. An Example and Basic Ideas

The main point of this chapter is illustrated by the following example. Imagine
a consumer who lives in a three-commodity world and makes the following
three choices.

*  When prices are (10, 10, 10) and income is 300, the consumer chooses the
consumption bundle (10, 10, 10).

*  When prices are (10, 1, 2) and income is 130, she chooses the consumption
bundle (9, 25, 7.5).

* When prices are (1, 1, 10) and income is 110, she chooses the consumption
bundle (15, 5, 9).

Are these choices consistent with the standard model of the CP, in which the
consumer has complete and transitive preferences and solves the CP for each set
of prices and income?

This question is somewhat artificial. The story of the CP is that the
consumer makes a single consumption choice, at one time, for all time. How
then could we observe three diferent choices that she makes? The best we can
do is to suppose that we have posed a set of hypothetical questions to the
consumer of the form, If prices were p and your income was y, what would you
purchase?1

Setting this artificiality to one side, a trivial affirmative answer to the
question is possible. Imagine a consumer who is indiferent among, say, all



bundles that give her less than 1000 units of each of the three goods. Since at
these three sets of prices, the incomes she has are insufficient to purchase any
bundle with 1000 units of each good, any choices—in particular, the choices she
has made—are consistent with utility maximization, as long as they respect her
budget constraint, which these do. This trivial answer may seem fanciful, but
the point is not. To falsify the standard model, we must be able to use the data
to conclude that some bundle is strictly preferred to some other(s). Otherwise,
complete indifference is consistent with any pattern of choice that satisfies
feasibility.

One way we might proceed is to ask whether the choices observed are
consistent with preference maximization for strictly convex preferences. If a
consumer with strictly convex preferences chooses the bundle x* when prices are
p and income is y, then the consumer strictly prefers x* to any other bundle x
such that p - x <y, since we know that with strictly convex preferences and a
convex choice set, the chosen bundle is strictly preferred to all fasible
alternatives.

We take a slightly different path in this chapter, asking whether the observed
choices are consistent with preference maximization for locally insatiable
preferences. Local insatiability gives us cutting power according to the ©llowing
lemma.

Lemma 4.1. Suppose a consumer with complete, transitive, and locally
insatiable preferences *— chooses the consumption bundle x* facing prices p
with income y. Then we know that x* ‘— x for all bundles x such that p - x =

y. And we know that x* *— x for all bundles x such thatp - x < y.

Proof. The first part is obvious: Ifp - x =y, x is fasible. Since x* is chosen, it
must be at least as good as x. The second part uses local insatiability: Ifp - x <
y, local insatiability ensures that there is some bundle x’ near enough to x so
that p-x’ <y, with x" =~ x. This means x' is feasible; hence x* = x'. But then x*

“— x' ' x gives the desired conclusion.
- |

Now back to the example. From the data given above, we calculate the cost



of each of the three selected bundles at each of the three sets of prices. This is
done for you in Table 4.1.

Prices
(10,1010) (101,2) (1.1,10)
(10,10,10) 300 130 120
Bundle (9,25,75) 415 130 109
(15,59 290 173 110

Table 4.1. Cost ofthree bundles at three sets of prices.

In each case, the bundle selected exhausts the income of the consumer. This
is required for these choices to be consistent with local insatiability: A locally
insatiable consumer always spends all of her income; ifa consumer ever chooses
a bundle that costs strictly less than the income she has available, she cannot be
maximizing locally insatiable preferences.

Beyond this, the important things to note are:

e When (10, 10, 10) was chosen (at prices (10, 10, 10) and income 300), the
bundle (15, 5, 9) could have been purchased with some money leff over
Apparently, this consumer strictly prefers (10, 10, 10) to (15, 5, 9).

* At the second set of prices (10, 1, 2), since (10, 10, 10) and (9, 25, 7.5)
both cost 130 and (9, 25, 7.5) was selected, the latter must be at least as
good as (10, 10, 10).

* At the third set of prices (1, 1, 10), the bundle (9, 25, 7.5) costs 109, while
(15, 5, 9) costs 110. And we are told that with income 110, the consumer
chose (15, 5, 9). Hence, (15, 5, 9) =— (9, 25, 7.5).

The data tell us that (10, 10, 10) s (15, 5, 9), that (9, 25, 7.5) '— (10, 10,

10), and that (15, 5, 9) — (9, 25, 7.5). We can string these three deductions
from the data together in the order (10, 10, 10) — (15, 5, 9) — (9.25, 7.5) "~

(10, 10, 10), which by transitivity (if the consumer has complete and transitive



preferences) tells us that (10, 10, 10) — (10, 10, 10). These data are therefore
inconsistent with consumer behavior based on the standard preference-
maximization model with locally insatiable preferences. On the other hand,
suppose the third piece of data was instead:

e At prices (1, 2, 10) and income 115, the bundle selected is (15, 5, 9).

Then we would have come to no negative conclusions. At the first set of prices
and income, the bundles (10, 10, 10) and (15, 5, 9) are affordable, and as the
first bundle is selected and the (15, 5, 9) does not exhaust the budget constraint,
(10, 10, 10) is revealed to be strictly preferred to (15, 5, 9). At the second set of
prices and income level, (10, 10, 10) and (9, 25, 7.5) are precisely affordable and
(9, 25, 7.5) is selected, so it is revealed to be weakly preferred to (10, 10, 10).
This is just as before. But now, at the third set of prices and income level, of
the three bundles only (15, 5, 9) is affordable. Knowing that it is selected tells
us nothing about how it ranks compared to the other two; it could well come at
the bottom of the heap. In fact, the other two choices tell us that (15, 5, 9) must
come bottom among these three; the data are consistent with preferences among
the three bundles that have (9, 25, 7.5) — (10, 10, 10) %~ (15, 5, 9), as well as
preferences where (9, 25, 7.5) ~ (10, 10, 10) *— (15, 5, 9).

Of course, this argument doesn’t tell us for sure that these three pieces of
data are consistent with locally insatiable preference maximization; we need
locally insatiable preferences for all ofR3+ that support these three choices. But

it is not hard to imagine that we can fill in preferences consistent with these
data. The main result of this chapter, Afiiat’s Theorem, shows that we can
construct preferences supporting these choices that are complete, transitive, and
locally insatiable, and, in addition, strictly increasing, convex, and continuous.

4.2. GARP and Afriat’s Theorem

To generalize the example, three definitions are needed. The setting throughout
is one with k£ commodities, so that consumption bundles lie in Rk+, prices are

from Rk++, and income levels come from R, .

Definition 4.2.



a. Take any finite set of (feasible) demand data: x' > 0 chosen at (p', y'),
>0 chosen at (p*, Y), ..., and X’ >0 chosen at (p’, '), where, in addition,
P X <y foreach . Ifp' - ¥ < y’ the data reveal directly that X' is weakly
preferred to ¥, written X 9 ¥. And the data reveal directly that X' is
strictly preferred to ¥, wrztten Kol ifp' - ¥ <3 (The superscript d is
for directly.) Note that X' v implies X Ay

b.  Suppose that for some X and ¥, there is a chain of direct revelations of
weak preferences that start with X' and end with ¥. That is, for some x'1,
Loadm o d e d g2 d | d o — 1 d g o d o Then the
data indirectly reveal that X' is weakly preferred to ¥, written ¥ " ¥. If
some one or more of the steps in the chain is a direct relevation of strict
preference, the data indirectly reveal that X' is strictly preferred to ¥,
written X =" . (The superscript r is for revealed.) In this definition, we
allow for the case in which no intervening steps are required; ¥ wd
implies X' " ¥, and X ¢ ¥ implies X' " ¥.
c. The data satisfy the Generalized Axiom of Revealed Preference,

abbreviated GARP, if no strict revealed preference cycles exist. That is, for
no ¥ is it the case that X' =" .

Part ¢ sometimes confuses students, so let me be explicit on two grounds. First,
suppose that for some ¥, p’, and y/, p' - ¥ < ). Then according to part a of the
definition, ¥ < ¥/, hence by part b, ¥ " ¥, and hence GARP is violated. In
words, GARP is violated if any bundle chosen at given prices and income costs
less at those prices than the level of income. Second, suppose ¥ —' ¥ and,
simultaneously, ¥ g )3, for some pair)f and ¥. That is, there is a chain ol
revealed weak preferences ffom X to ¥ and a chain of revealed weak preferences,
at least one of which is also strict, fom ' back to x. Then according to part b of
the definition, x¥' " x' and ¥ " ¥/, and this is also true for any element in
either of the two chains of revealed preference. The two chains join together in a



cycle, so there is a chain going ffom any link in the chain back to that link,
with one of the links direct strict preference. Satisfaction of GARP is
equivalently stated as: No such cycle can be found in the data.

Proposition 4.3 (Afriat’s Theorem). If a finite set of demand data violates
GARP, these data are inconsistent with choice according to locally insatiable,
complete, and transitive preferences. Conversely, if a finite set of demand data
satisfies GARE, these data are consistent with choice according to complete,
transitive, strictly increasing (hence, locally insatiable), continuous, and
convex preferences.

Before giving the proof, two comments are in order.

1. GARP concerns weak and strict revealed preferences among the finite
collection of bundles that are chosen. We need not compare chosen bundles
with those that never are chosen. No violations of GARP among the set of
chosen bundles is necessary and sufficient for standard (locally insatiable)
preferences for all okaJr.

2. If the data contain a violation of GARP, then no locally insatiable,
complete, and transitive preferences can rationalize or explain the data. But
if the data satisfy GARP, then not only can we produce locally insatiable,
complete, and transitive preferences, but preferences which in addition are
strictly increasing, continuous, and convex. In other words, given a finite
collection of demand data, we cannot falsify the hypothesis that the
consumer’s preferences are strictly increasing or continuous or convex
without throwing away the entire model of choice by locally insatiable,
complete, and transitive preferences. The three extra properties add no
testable restrictions.

Please be careful in interpreting this. This does not say that it is
impossible to falsify strictly increasing or convex preferences empirically.
(I'm unwilling to make a claim one way or the other about continuity;
whether continuity can be tested empirically depends on your definition ofa
valid empirical test.) Suppose, for instance, I ask a consumer to rank order
the three distinct bundles x, x/, and 0.5x + 0.5x', and she says the convex
combination is definitely the worst of the three. Then we know she doesn’t



have convex preferences. Suppose I ask her to rank order three distinct
bundles x, x', and x” where x” and x" are both > x and neither x’ > x" nor x” >
x', and she says x' is worst of the three. Then we can reject the hypothesis
that she has strictly increasing preferences (and even nondecreasing
preferences), without (yet) rejecting local insatiability. The point is, these
are not questions about market demand data. What is asserted here is that,
with a finite collection of market demand alone, 1 can’t reject the three
properties without simultaneously rejecting that her preferences are
complete, transitive, and locally insatiable.

The proof of Afriat’s Theorem

The first “half” of the proposition is easy. If the data are generated from locally
insatiable, complete, and transitive preferences “—, then x’ o d o implies X' —
¥, and x }:—d ¥ implies ¥ *— ¥. The argument is the one given in Lemma 4.1.
Therefore, by standard transitivity properties of strict and weak preferences, x
" x implies ' *— X/, which violates the asymmetry of strict preference.

The proof of the second half of the proposition is long and very technical.
The proof ] am about to give is due to Varian (1982). I am unaware of any other
use for these prooftechniques in economics; to my knowledge, they give you no
technique that can be usefully transfrred to any other situation you will
enounter. Therefore, I think you can almost surely skip this proof without risk
of missing something later on. On the other hand, if you are an aficionado of
very elegant proofs, this is one to see. Assume throughout that we have J

demand choices—¥ > 0 chosen at prices p/ with income )/, such that p/ - ¥ </,
forj =1, ..., J—that collectively satisfy GARP.

As we remarked infrmally a page ago, r each j, p/ - ¥ =/, ifp/ - ¥ < ¥/,
then ¥ 7 ¥ according to the definition, which is a violation of GARP.

Lemma 4.4. For each i, let n(i) be the number of indices j such that X =" .
a. If nG) < n(), thenp’ - X < p' - ¥.
b. Ifn()=n(), thenp' - X <p' - ¥.

c. At least one i satisfies n(i) = 0.



Proof. For both a and b, we prove the contrapositives. (a) Ifp’ - X' >p’ - ¥ = y/,
then ¥ “—“ ¥ by definition. But then if¥ =" x* for any £, it Hllows that X' "
X, and hence the set of indices k such that ¥ P + is a subset of the indices
such that ' =" x¥; n(j) < n(i) Hllows immediately.

(b) And ifp - ¥ > p’ - ¥, then ¥ },—d ¥. We know that every k such that ¥ "
¥ also satisfies ¥ o x/‘, and there is at least one &, namely j itself such that X
' ¥ but not ¥ =" ¥. (If¥ '~ ¥, GARP is violated.) Hence n(i) > n(j). The
contrapositive to this that n(i) < n(j) implies p’ ¥/ <p -¥, and b then follows as
a special case.
(c) Ifn(7) > 1 for every i, then for each i we can produce another index j such that
¥ " ¥. Starting ffom any i, this gives us a chain ¥ = X'l %" x2 " ¥3
. Since there are only J possible values for the bundles, this chain must

eventually cycle, which would violate GARP. -

Lemma 4.5. Real numbers v and o > 0 for i = 1, ..., J can be found such
that, for all i and j,

Proof. We use induction on J. The result is trivially true for J = 1. Suppose it
is true for all sets of data of size J— 1 or less. Take a set of data of size J (with
no violations of GARP), and (renumbering if necessary) let 1 through / be the
indices with n(i) = 0. By Lemma 4.4c we know that /> 1. Therefore, the set of
indices / + 1, ..., J gives us J — 1 or fewer pieces of data (with no violations of
GARP). (The case where / = J is handled by an easy special argument.) Hence
we can produce v/ and o as needed fori fiom 7 + 1 toJ, and inequality (4.1)
holds for i and j both from 7+ 1 to J.
We extend to a fill set of v/ and o as Bllows. Set

vi=tt=..v'=  min ¥ +ai[p2f-p 2]



By this definition, (4.1) will hold for i fom 1 to /and j ffom 7+ 1 to J.

To get (4.1) for i fiom 7+ 1 to J and j fiom 1 to Z, we use o/. Note that by
Lemma 4.4a, for such i and j, since n(i) > 0 and n(j) = 0, we know that p/ - x' >
P - ¥. Therefore, we can select (for eachj = 1, ..., I) o/ large enough so that
these strictly positive terms give us the desired inequalities.

Finally, Lemma 4.4b tells us that for i and j both fom 1 to 7, p/ - ¥/ > p/ -
¥. Therefore, since v/ = v/, no matter what (positive) values we chose for o/, we
have (4.1). This completes the induction step and the proof of Lemma 4.5.

The rest is easy. Define

u(z) = min_ vt + of[pt-x — P 2]

=1

Note that u is the minimum of a finite set of strictly increasing, affine functions;
hence u is strictly increasing, concave, and continuous. (Math facts: The (point-
wise) minimum of a finite set of strictly increasing functions is strictly
increasing. The minimum of a finite set of concave functions is concave. The
minimum of a finite set of continuous functions is continuous. If you did not
know these facts, prove them.)

From (4.1), u(¥) = V.. This is a simple matter of comparing (4.1) with the
definition of u.

We are done once we show that u rationalizes the data. To do this, take any
observation (¥, p/, /). Because GARP is satisfied, p/ - ¥ = )/. We know that ¥/
gives utility v. And it is evident fiom the definition of u that for any x such that

poxsy=p ¥,
uz)= min o +a'lpt - pt 2] <ol ed[pn—p 9] <
ilyyd

That does it.
]

WARP: The Weak Axiom of Revealed Preference



In many economic textbooks, the so-called Weak Axiom of Revealed Preference,
or WARP, is discussed. It may be helpful to make (brief) connections with what
we have done here.

The Weak Axiom of Revealed Preference says that ifx* is chosen at (p, y),
then x* is strictly preferred to any other bundle x such that p - x <y. This is
almost a special case of GARP. It is a special case because it refers only to
direct revelation of preference. GARP, on the other hand, looks at chains of
revealed preference. But it is only a/most a special case because it is a bit
stronger than local insatiability allows; following Lemma 4.1, we can conclude
only that when x* is chosen at (p, y), then x* is strictly preferred to any other
bundle x such that p - x < y, and is weakly preferred to x ifp - x = y.

The diference comes about because we are augmenting the standard model of
preference maximization with local insatiability; WARP “works” if we augment
the standard model with the maintained hypothesis that solutions to the CP are
always unique, for example, if preferences are strictly convex.

4.3. Comparative Statics and the Own-Price Effect

Comparative statics is a term used by economists for questions (and answers to
those questions) of the form, How does some economic quantity change as we
change underlying parameters of the situation that generates it? Much of the
empirical content of economics lies in the comparative statics predictions it
generates. If within a model we can show that quantity x must rise if parameter z
falls, and if the data show a falling z accompanied by a falling x, then we reject
the original model.

In terms of consumer demand, the natural comparative statics questions are:
How does demand for a particular good change with changes in income, holding
prices fixed? How does demand for a good change with changes in the price of
some other good, holding all other prices and income fixed? And—the so-called
own-price effect—how does the demand for one good change with changes in
the price ofthat good, holding other things fixed?

Everyday experience indicates that the theory on its own will not have much
to say about income effects. There are goods the consumption of which declines
as the consumer’s wealth increases, at least over some ranges—public
transportation is a commonly cited example. And there are goods the
consumption of which rises with the consumer’s wealth—taxicab rides, or



skiing trips to the Alps. Goods whose consumption falls with wealth are called
inferior goods, while those whose consumption rises with wealth are called
superior. Moreover, when the percentage of income expended on a good rises as
wealth rises, the good is called a/uxury good; nonluxury goods are called
necessities.

Of course, most goods do not fall neatly into a single one of these
categories. Demand for public transportation by a given consumer rises as the
consumer moves away ffom improverishment, and then falls as the consumer
moves toward being rich. Indeed, since demand for all goods must be zero when
y = 0, only a good that is never consumed in positive levels could qualify for
always being inferior. Hence while a superior good is one the consumption of
which never falls with rising income, an inferior good is one where the level of
consumption sometimes falls with rising income.

As for the effect on the consumption of commodity i of a change in the price
of commodity j, there is (again) little the bare theory of preference maximization
can tell us. Demand for nails falls as the price of lumber rises, and the demand
for comn rises with increases in the price of wheat. Roughly speaking, nails and
lumber are complementary goods, while corn and wheat are substitutes. (This is
rough for reasons that are discussed in later chapters, when precise definitions
will be given.)

The best hope for a strong comparative statics prediction ffom the standard
theory concerns own-price effects; everyday experience suggests that a consumer
will demand less of a good as its own price rises. This is so strongly suggested
by most people’s experiences that goods for which this is true are called
normal, while goods that are not normal—the demand for which sometimes
rises as the price of the good rises—are called Giffen goods (named for Scottish
economist Sir Robert Gifen, to whom the notion is attributed by Alfred
Marshall).

The question is, if we look at demand by a preference-maximizing
consumer, will demand for a good inevitably fall as the price of that good rises,
holding everything else fixed? The answer, which you probably know from
intermediate microeconomics, is no. One can draw pictures of indifference curves
that support an increase in the consumption ofa good as its own price rises.

With Afiiat’s Theorem, we can rigorize these pictorial demonstrations. Fix
prices p, income y, and demand x at these prices and income. Choose some



commodity (index 7), and let p’ be a price vector where all the prices except for
good i are the same as in p, and p’; > p,. Let x’ be demand at p’ and y. Since

(assuming local insatiability) p - x = y and p'is greater than p, as long as x; > 0,

p"x > y. As long as p"x' =y it doesnt matter what x' is—in particular, it
doesn 't matter whether x'; < x; or x'; > x—GARP will not be violated by these

two data points. Afiiat’s Theorem tells us that convex, strictly increasing, and
continuous preferences can be found to support the existence of a Giffen good.
Indeed, if we have any finite sequence of demand data for a fixed income level y
and a succession of prices that involve (successive) rises in the price of good i
only, as long as the demanded bundles satisfy the budget constraint with
equality, GARP will not be violated.

A positive result

Consider the fllowing alternative comparative statics exercise. Ask the
consumer for her choice at prices p and income y. Suppose x is her choice. Now
replace p with p’, where p’ is the same as p, except that the price of good i has
been strictly increased, and simultaneously replace y by y' = p’ - x. Let x’ be the
chosen bundle at p’and y". Suppose x'; > x;.

Since x is feasible at (p’, ') by construction, we know that x' must be
weakly preferred to x. But at the same time,

L L ot ooy anp —p
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Rewrite the inner two terms as
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invoking the fact that p’; = p; for j #i. Since p’; > p; and x; > x;, we know that
(@', —p)X'; > (p'; — p;)x;; subtract the larger lefi-hand term ffom the lefi-hand side



of the previous display, and the smaller right-hand term fiom the right-hand side
of the display, and we see that p - x’' < p - x. Therefore, for locally insatiable
preferences, x is strictly preferred to x’. Oops. This demonstrates the ©llowing
formal result.

Proposition 4.6. Suppose x is chosen by the consumer facing prices p and
income y, and x' is chosen at prices p' and income p' - x, where p' is p except
for an increase in the price of good i. If these choices are made according to
the standard model with locally insatiable preferences, then x'; <x;.

In other words, if we ask this pair of questions of a consumer and find the
consumption of good i rising, we have refuted (for this consumer) the standard
model, augmented with local insatiability.

Giffen goods must be inferior
Before commenting on the result just derived, let me gather up one more “ fact.”

Proposition 4.7. Suppose i is a Giffen good for some preference-maxiziming
consumer with locally insatiable preferences. That is, for some income level y,
price vectors p and p' such that p is identical to p' except that p; < p';, and

consumption bundles x and x' such that x is chosen at (p, y), x' is chosen at (p',
V), X'; > x;. Then good i must be (sometimes) inferior for this consumer. More
specifically, y'=p - x' <y and if x" is a choice by the consumer facing (p, '),
then x"; > x;.

Proof. Sincep' - x' =y and x’; > x; > 0, we know that )’ =p - x" <y. Now
suppose x” is a bundle chosen at (p, y). (To be completely rigorous about this,
we ought to have insisted on augmenting the standard model of complete and
transitive preferences with local insatiability and continuity, the latter to ensure
that some bundle is chosen at every price and income combination.) Comparing
x" and x", we have that x’ is chosen at (p’, y), and x” is chosen at (p, p - x'),
where p is p’ except for a reduction in the price of good i. By an argument
similar to that in the proof of Proposition 4.6, we conclude that x”; > x". But x’;

> x; by assumption; therefore x”; > x;.



Discussion

Why are Giffen goods possible? How could the consumption of good i rise with
increases in its price? Roughly, the reason is that when the price of good i rises,
two things happen. The relative price of good 7, relative to the prices of other
goods, is increased. Our expectations that the consumption of good i will fall
(or, at least, not rise) stems ffom this; as the relative price of good i rises, the
consumer ought to substitute other goods for it. But also the “level of real
wealth” of the consumer falls; her income y is no longer sufficient to purchase
the bundle x that she chose before the rise in p;. A poorer consumer may choose

more of good i because good 7 is inferior, and this implicit income effect may
overcome the effect ofthe increased relative price of good i.

Indeed, the first alleged instance of a Gifen good concerned potatoes in
Ireland during the great potato famine: The shortage of potatoes caused the price
of potatoes, the staple crop of the working class, to rise precipitously. This so
impoverished the working class that their diet came to consist almost entirely of
... potatoes; they could no longer afford to supplement potatoes with other
goods. The effect was so strong, it was claimed, that they purchased more
potatoes. (Careful empirical evidence has been offered to refute that this did in
fact happen.)

Proposition 4.7 supports this intuitive explanation, by showing that if a
good is Gifen, it must be inferior Or, to put it the other way around, if the
good is superior—if there is no chance that reduced income leads to an increase
in its consumption—then it cannot be Giffen; a rise in its price cannot lead to a
rise in its level of consumption.

And Proposition 4.6 pretty much clinches the argument. Recall how the
comparative statics exercise worked. We began with prices p, income level y,
and a choice x by the consumer. The price of good i was increased, giving new
prices p'. This makes the consumer worse off in real terms—she can no longer
afford x (ifx; > 0)—so to compensate her, we increase her wealth to y' = p' - x,
just enough so that she could purchase x if she wanted to. Now the income effect
of lower real wealth is controlled for, leaving only the relative price effect, and
the consumer must choose a bundle x’ with no more of good i than before.

Compensating the consumer in this fashion—giving her enough income so



that at the new prices she can purchase the bundle at the original prices—is
called Slutsky compensation. We pick up the story of compensated demand in
Chapter 10, but for now we conclude with a final proposition, which is left for
you to prove.

Proposition 4.8. For a consumer with locally insatiable, complete, and
transitive preferences, suppose that x is chosen at prices (p, y), and x' is chosen
at prices p' and income p' - x, for any other price vector p'. Then (p'—p) - (x' —
x) <0.

Coming attractions

We are far from finished with the classic theory of consumer demand, but we are
going to take a break ffom it for a while. My personal prejudices are to
undertake further foundations of models of choice—under uncertainty, dynamic,
and social—before finishing the story. You (or your instructor) may fel
diferently about this, in which case you may wish to move to Chapters 10 and
11, concerning the dual consumer’s problem, Roy’s identity, the Slutsky
equations, and integrability. But if you do this, a wamning: The mathematical
developments in Chapters 10 and 11 build on methods first employed in the
theory of the profit-maximizing firm, in Chapter 9. So you should probably
tackle Chapter 9 before Chapters 10 and 11.

Bibliographic Notes

Afiat’s Theorem is given in Afiiat (1967). The proof given here is taken
directly ffom Varian (1982). The axioms ofrevealed preference discussed here are
applied as well in the literature to demand functions, full specifications of
consumer demand for all strictly positive prices and income levels; this part of
the literature will be discussed in Chapter 11.

Problems

m *4.1. In a three-good world, a consumer has the Marshallian demands given
in Table 4.2. Are these choices consistent with the usual model of a locally
insatiable, utility-maximizing consumer?



Prices Income Demand
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1 20 10
1 20 3
2 25 13
2 20 15

Table 4.2. Four values of Marshallian demand.
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m 4.2. There are a fw details to clean up in the proof of Affiat’s theorem. First,
show that the minimum over a finite set of concave functions is concave, the
minimum over a finite set of strictly increasing functions is strictly increasing,
and the minimum over a finite set of continuous functions is continuous.
Second, show how to proceed if, in the proofof Lemma 4.5, you find that n(i) =
0 for all 7, and (hence) = J.

m 4.3. For a two-good world, create an indiference curve diagram that shows
the (theoretical) possibility ofa Gifen good.

| *4.4. Prove Proposition 4.8.

T 1

I A diferent way to try to make the story realistic is to suppose (1) that the
consumer shops, say, each week, (2) has a fixed budget for each week, and (3)
has preferences that are weakly separable ffom one week to the next and that are
unchanging ffom week to week. Then our three pieces of data could be the
results of three weeks of shopping. But suppositions 2 and 3 are rather
incredible.



Chapter Five




Choice under Uncertainty

Economic decisions offen have uncertain consequences. When you purchase a
car, you don’t know its quality. When you choose an education, you are unsure
about your abilities, later opportunities, and the skills of your instructors. In
financial and insurance markets, uncertainty is almost the essence of the
transaction.

The theory of consumer choice developed so far can be applied directly to
such commodities. A can of Olympia beer is a definite thing—a share of General
Motors is another—and we can work with consumer’s preferences for bundles
that contain so many cans of beer, so many shares of GM, and so on. But
because “a share of GM” has a special structure (or, rather, because we can
model it as having a special structure), we are able to enlist specialized models
of choice that take advantage of that structure.

In this chapter and the next, we develop and then apply the standard
specialized models. This chapter concerns the basic theories of choice in
uncertain situations; Chapter 6 provides applications.

5.1. Two Models and Three Representations

This is a very long chapter and it is easy to get lost in the details. To help you
keep track, I begin with a discussion of where we are headed and how,
conceptually, we get there.

The state-space model

The first thing to settle is how to model things with uncertain consequences. In
economics, two standard models of uncertainty are used. The first is variously
called the state-space, states-of-nature, or contingencies model. (It is also called
the model with subjective uncertainty, but the explanation for this name comes
only when we get to the representation theorem.)

In this approach, the consumer chooses ffom a set of available actions or
acts. Each act has uncertain consequences, depending on the realization of
uncertain factors. The formal model consists of a set X of consequences (or
prizes) and another set S ofstates of nature or contingencies. Each state of
nature gives a complete description of how all pertinent uncertainty resolves—



what is the weather, the results of whatever coin flips might be taken, and so on.
The state space S is a list of states s that are both mutually exclusive—at most
ones € S will occur—and exhaustive—at least one s € S will occur. Because
each s € S is a complete description ofall relevant uncertainty, the state and the
act taken completely determine the consequences. Therefore, each acta is
described by a function ffom S to X, where a(s) = x means that the act a gives
outcome a(s) = x if the state of nature is s. The set of functions ffom S to X,
denoted X5, is called the (universal) space of acts, denoted by A.

A given consumer has preferences '~ over the space of acts 4. In choosing

from a subset of 4, the consumer selects some “— -best element of the set of

available acts, as in Chapter 1. As in Chapter rwe seck a utility function
representation of »—, a function u : 4 — R such that u(a) > u(a’) ifand only ifa

“— a' (where, remember, both ¢ and a' are functions). As in Chapter 2, we
assume more of '— than that it is complete and transitive, and we hope in

consequence to get out a nicer utility representation.

As a concrete example, suppose the acts under consideration are various bets
on a two-horse horse race, where the two horses are Secretariat and Kelso. The
amount won or lost in a given bet or act is determined by the winner of the race,
where a dead heat (tie) is a real possibility. We have

S = {Secretariat wins, Kelso wins, dead heat}.

I’11 abbreviate these three states as sy, s,, and s, respectively.

Suppose each act results in a dollar prize ffom the set X = {$-2, $0, $1.20,
$3}, where $—2 means a net loss of $2. A typical bet or act would be a’, given

by
$1.20, ifs =3,
a'(s) =4 $—2, ifs=s, and
30, if 5 = s3.



In words, a'is a bet of $2 that pays back $3.20, so you net $1.20, if Secretariat
wins, nothing if Kelso wins, and returns your stake if the race ends in a dead
heat.

Acts can be depicted as in Figure 5.1: We draw a chance node (or circle with
three arms coming out of it), where each arm represents and is labeled by one of
the three states; at the end of each arm we give the prize. Hence the act in Figure
5.1a is the bet @' fom the previous paragraph, while the act in Figure 5.1b is
the constant act that gives prize $3 no matter how the race ends.

&y
$1.20 $3.00
8
5200 $3.00
k]
3

$0.00 $3.00

(a) (b)

Figure 5.1. Two acts or gambles

The consumer, of course, can access only a few of all possible acts. For
instance, it is the rare race track that will offer the $3-net-prize-no-matter-how-
the-race-ends bet. But we imagine that the consumer has preferences over all
conceivable acts—she will probably like the $3-for-sure act rather a lot—and we
seek a utility function representation for those preferences.

Two representations for the state-space model
In Chapter 1, we settled for any numerical representation of — . In this chapter,
following the general idea of Chapter 2, we look for additional properties of *—

that guarantee a “nice” numerical representation. In particular, we look for one of
two sorts of representations. (Assume for now that S is finite.) The first is
additively separable across states:



For each s € S, there is a function u, : X — R such that

u(a) = Z ue(a(s)) (5.1)

=y
represents “=—.

The second, which is a special case of the first, is called a subjective expected-
utility representation:

For some probability distribution p on S and function U : X — R,

u(a) = Z p(8)U(a(s)) (5.2)

)
represents ‘=—.

This is a special case ofan additively separable representation, because, in (5.2),
each state-specific sub-utility function u, of (5.1) is a scaled copy p(s)U of some

single utility fanction U.

Savage’s Sure-Thing Principle

What does it take to get either of these representations? We already know that
— must be complete and transitive, so the question really is, What more? The
classic answer is given in Savage (1954). This is a relatively complex result,
and we settle (in Section 5.3) for the simpler development in Anscombe and
Aumann (1963). But a brief discussion of the most important of Savage’s
axioms—which he calls the Sure-Thing Principle'—is in order.

From our discussion in Section 2.5 of additive separability, you should be
able to anticipate this axiom: Think of each act a as a vector of consequences,
where each component corresponds to a state s € S. For additive separability
state-by-state, it must be that preference is separable into 7 and 7€, for every



subset 7 of S. (Recall that 7€ is the complement of 7.) To write this more
formally:

Axiom 5.1 (Savage’s Sure-Thing Principle). Suppose a, a', b, and b’ are
four acts, and T S S is a subset of the state space, such that a(s) = a'(s) and
b(s) = b'(s) for all s € T, and a(s) = b(s) and a'(s) = b'(s) for all s € 7€
Then a =~ b if and only if a' ' b'.

This is really quite simple. The supposition is that a and b agree on 7. Hence
if we compare a and b, it is “natural” to look at how they difer where they
differ, namely on 7. But a’ and b’ also agree on TC, and sincea = a'and b = b’
on 7, how a and b difter where they differ is identical to how a’ and b’ differ
where they differ. Hence the ranking of a and b should be the same as that ofa’
and b'.

Or to put it more in the language of weak separability, a and b are identical
on TC. The axiom says that sow they are the same doesn’t matter. If we change
both of them on 7€ so that they continue to agree there, without changing how
they (potentially) disagree on 7, and hence getting to a’ and b', we haven’t
affected how they compare.

When we introduced weak and strong separability in Chapter 2, we
proposed them as very special properties. Now we are proposing a form of
strong separability as being entirely natural and intuitive. The difference can best
be seen by comparing two situations: acts based on the two-horse race; and
meals composed of an entrée, a main course, and dessert. To take the latter first,
we think of meals that are three-dimensional vectors, such as (shrimp, steak,
cake), meaning shrimp for an entrée or appetizer, steak for a main course, and
cake for dessert. In this setting, separability ofthe first two components from the
third is not natural: How the consumer feels about shrimp vs. melon for a starter
depends on whether there is fruit for dessert. That is, it is entirely natural to
suppose that



(shrimp, steak, fruit) = (melon, veal, fruit), but

(shrimp, steak, cake) < (melon, veal, cake).

In this setting, the consumer gets all three components to eat, and interactions
between them may (very naturally and intuitively) matter. But if we write acts
based on the two-horse race as three-dimensional vectors, such as (10, =5, —1),
meaning win 10 in state is s, lose 5 in state s,, and lose 1 in state s5, then in

this setting the consumer gets only one of the three components. Suppose the
consumer proclaims

6, =2,-1D=@22-1,

and then we tell her, You can still have your choice between those two
acts/gambles, except that if the race is a dead heat (state s3), we will give you 2
instead of taking 1 ffom you. Since the race is either a dead heat or not, and
since her choice doesn’t affect her prize if it is a dead heat in either case, she
naturally won’t change her ranking:

(5,-2,2) = (2,2,2).

Or so Savage’s Sure-Thing Principle—and the two representations—would
have us assume.

Two examples where the representations fail

To sharpen your understanding of the two representations and what they entail,
consider the ©llowing two examples.

1. Imagine you are marketing a particular product and trying to decide how
much advertising to do. To keep things simple, imagine that the product
will either sell 1000 units or 10,000. If it sells 1000, you will lose $1000,
not including the cost of advertising. If it sells 10,000, you will make
$3000 less the cost of any advertising. You can either advertise a lot or not



at all. Not advertising costs you nothing, while advertising a lot costs you
$1000.

Create the following model. The prize is your net profit. Possible
values are $-2000, $-1000, $2000, and $3000, so these four dollar
amounts constitute X. The states are your level of sales: You sell 1000
units (state s;) or 10,000 (state s,). Hence there are two states in S. The two
acts you can consider are: “advertise,” which we denote by a, where a(s|) =
$-2000 and a(s,) = 2000; and “don’t advertise,” which we denote by a’,
where a'(s;) = $-1000 and a'(s,) = $3000.

As long as your state-dependent utility functions u are increasing in
profits, if an additively separable representation holds you never choose to
advertise. Whether the state is s, or s,, a’ always gives a better outcome (by
the $1000 cost of advertising). The problem is easiest to see if we look at
the representation (5.2). In this story, your choice of an act presumably
influences how many units you sell. But in (5.2), the probabilities of the
states do not depend on the act chosen. That is, we don’t write p(s; a) or
anything like that. In an additively separable representation this is a bit
more subtle, but (essentially) the same problem arises: The functions u, are
not affected by the overall act you take. So in cases where acts themselves
influence the state that arises, we couldn’t expect representations of either
form to hold.

(In this example, a simple cure is available. We need three states: s,
the state that the product sells 1000 units whether you advertise or not; s,,
the state that the product sells 1000 units if you don’t advertise and 10,000
units if you do; and s3, the state that the product sells 10,000 whether you
advertise or not. [If there is a chance that advertising will anger potential
customers, we would add a fourth state.] The question of whether to
advertise becomes one of how likely is the state s,, in which you increase
your profits by $3000 if you do advertise, compared to the “lost” $1000 in
advertising fees in states 5| and s3.)

2. A second example shows the diference between (5.1) and (5.2). Imagine



that you are thinking of undertaking one of two acts. In the first, you will be
given an umbrella ifit is raining and suntan lotion if the sun is shining. In
the second, you are given the umbrella if the sun is shining and suntan
lotion if it is raining. We create a model of this with states of nature that
describe the possible states of the weather and with prizes that include
umbrella and suntan lotion.

Do we expect the representation (5.2) to hold in this case? Suppose in
our model there are two states, s; for rain and s, for sunny. And suppose

that you assess that these two states are equally likely. Then representation
(5.2) would require that you are indifferent between the two acts; each gives
you probability 0.5 of having an umbrella and probability 0.5 of having
suntan lotion, and whatever are the (state-independent!) utilities of those
two prizes, the expected utilities of the two acts are identical. But, of
course, the first act is preferable (unless you have perverse preferences),
because the umbrella is better than suntan lotion when it rains, while suntan
lotion is better than the umbrella when the sun is shining. The first act is
better state by state, so it is better overall.

This would not be a problem in the representation (5.1). It is natural to
think  that ug(umbrella) > ug(suntan lotion), sinces; is rain, and

ug(umbrella) < ug,(suntan lotion), since s, is sunny. As long as this is so,

the first act is better than the second, per any representation of the form
(5.2).

In (5.1), but not in (5.2), the value ofa prize can depend on the state in
which it is received. Representation (5.2) is appropriate only when prizes are
modeled in a way that makes their relative values independent of the state in
which they are received. If, instead ofumbrella and suntan lotion, the prizes
were things like dry but sunburned, wet and without sunburn and dry
without a sunburn, (5.2) might be reasonable. It is getting a bit ahead of
ourselves, to material that belongs to Chapter 6, but it is worth saying at
this point: In a lot of economics, model (5.2) is used, where the prizes are
money: you gamble (or invest), and your reward is, depending on the state
of nature, so many dollars, which presumably are used to purchase
consumption goods. You should be wary of such applications, insofar (for
instance) as the money prizes have different consumption-good-purchasing-



power in different states of nature in the model. An investment that pays a
big nominal return when overall economic times are good and a smaller
return when times are bad may be less risky than models ofthe (5.2) variety
indicate, if good economic times are accompanied by a higher cost ofliving.
(But the same investment may be worth less than (5.2) indicates, if good
economic times mean that other sources of income that you have are higher;
see the discussion at the end of this chapter on portfolio or correlation
effects. )

Objective probabilities and von Neumann—Morgenstern expected utility
The second standard model of choice under uncertainty is usually referred to as
the model with objective uncertainty, and the representation as (objective)
expected utility or von Neumann—Morgenstern expected utility.

In this approach, the choices available to the consumer are represented by
probability distributions over a given prize space; these objects are called
lotteries and gambles, as well as probability distributions. Formally, we have a
space X of prizes or consequences (just as in the first approach), out of which a
space P of probability distributions/lotteries/gambles over X is formed. The
consumer’s preferences are given by a preference relation ~— on the space P, and
we seek well-structured numerical representations of those preferences.

To keep the discussion simple, we will work (until the end of Section 5.2)
with probability distributions that have only finitely many possible prizes:

Definition 5.2. 4 simple probability distibution © on X is specified by

a. a finite subset of X, called the support of = and denoted by supp(n), and
b. for each x € supp(r) a number w(x) > 0, with ersupp(n) w(x) = 1.

The set of simple probability distributions on X will be denoted by I1. For = €
II, we “extend” the domain of = to all of X, writing n(x) = 0 for any x €
supp().

Forx € X, welet d, be that element of IT with supp(d ) = {x} and (of course)
o.x)=1

Please note: The set X can be infinite in this definition. But we only look at



probability distributions on X with finite support.

We will depict simple probability distributions by chance nodes in the style
ofFigure 5.2 (where the prize space X = R%‘); there is a chance node (circle)

with as many arms emerging as there are elements of the support of the
distribution, the prizes are listed at the ends of the arms, and the probabilities of
the prizes are given in parentheses along the arms. So, for example, the chance
node in Figure 5.2 represents the simple lottery z with supp(z) = {(10, 2), (4,
4)}, #((10, 2)) = 1/3, and n((4, 4)) = 2/3.

(1/3) (102)

O< (2/3) (4.4)

Figure 5.2. A simple probability distribution

Compare this model with the state-space model described previously. In
particular, imagine that the consumer must decide between three bets on the
horse race: (a) bet $2 on Secretariat to win, where a win pays $3.20; (b) bet $2
on Kelso to win, where a win pays $5.00; and (c) make no bet. In the state-
space model, we formalize this by forming the three-element state space
described earlier and supposing that the consumer must choose between the
three acts or gambles depicted in Figure 5.3. The consumer has preferences over
all of 4, and she chooses whichever ofthe three she most prefers.

In this second model (or model technique), we assume that each of the three
gambles can be described adequately by a probability distribution over monetary
prizes, for instance as in Figure 5.4. The consumer has preferences over 77. And
she chooses whichever probability distribution she most prefers.
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Figure 5.3. Three state-contingent acts/bets
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Figure 5.4. Three probability distributions/gambles

The obvious question concerning the second model technique is, Where did
the probabilities come fiom? Moreover, I’ve written out probability
distributions where the probabilities of a $0 prize in the first and second gamble
are equal, and where the probability of getting $1.20 in the first equals the
probability of the outcome $—2.00 in the second. Is this necessarily entailed?
The answers are: (1) We don’t say (within this sort of model) where the
probabilities come from. (2) No, these cross-lottery restrictions on the
probabilities are not entailed by the model per se. In this second sort of model,
the probabilities are exogenous; they are part of the description of the lottery. It
might be sensible or good modeling technique to add restrictions on these out-
ofthin-air probabilities such as, The probability of $1.20 in the first gamble



equals the probability of $-2.00 in the second. But that is a question of model
building and not of the application of this specific model, which begins with
probability distributions.

There is a subtle point here. In the state-space approach, we can distinguish
between preferences representable as in Equation (5.1) and those representable as
in Equation (5.2). The issue, essentially, is whether the value of a prize is
independent of the state in which it is received. That issue cannot and does not
arise in the second modeling approach, because all we have formally are prizes
and their probabilities. The idea of ““the state in which a prize is received” may
be in the back of our minds as we put together a formal model of this second
type, but it stays in back.

Compound lotteries

When we have two simple probability distributions, say 7 and p, and a number
a between zero and one, we can take the a-convex combination ofz and p,
written az + (1 — a)p, in two steps:

1. The support of this new probability distribution is the union of the
supports of 7 and p_z

2. Ifx is a member of this union, then the probability given by ax + (1 — a)p
to x is an(x) + (1 — a)p (x), where 7(x) is understood to be zero ifx is not in
the support of 7, and similarly for p.

An example may help. Suppose 7 gives probabilities.3,.1, and .6 to prizes
X, ¥, and z, respectively, and p gives probabilities .6 and .4 to prizes x and w,
respectively. We form, say, (1/3) = + (2/3)p as follows: The support of (1/3)z +
(2/3)p is {x,  z, w}, and the probabilities it gives to its four possible prizes
are, respectively,

forx, (1/3)(.3) + (2/3)(.6) = .5
for y, (1/3)(.1) + (2/3)(0) = .0333 ...
for z, (1/3)(.6) + (2/3)(0) = .2
for w, (1/3)(0) + (2/3)(.4) = .26666 ...
When we depict probability distributions such as (1/3)x +(2/3)p in the

example just given, we sometimes will draw a compound lottery. For example,
in Figure 5.5a, we show (1/3)z + (2/3)p as a compound lottery: a lottery whose



outcomes are the lotteries # and p. In Figure 5.5b, we depict the one-stage
lottery to which this compound lottery reduces. In our formal setup, the objects
depicted in Figures 5.5a and b are precisely the same thing, which is “more
correctly” the lottery in 5.5b. When we say that the consumer has preferences
over I, it is implicit that the consumer regards the lotteries in 5.5a and b as
precisely the same object. We can imagine a theory in which these two lotteries
are distinguished in the mind of the consumer, and she prefers one to the other.
But this isn’t that theory. It doesn’t matter how probabilities arise here—what
are the states, or whether there are compound lotteries or not—because the
formal model isn’t rich enough to incorporate such considerations. All this
theory has is prizes and their probabilities.

(03)

(0.2686...)

(@) (b)

Figure 5.5. Compound and reduced lotteries. The compound lottery in
panel a reduces to the single-stage lottery in panel b by the laws of
probability theory. In our theory, the consumer either identifies these two
as being the same object or, at least, is indifferent between them.

The representation and axioms

Within this setting, we seek avon Neumann—Morgenstern expected-utility
representation:



Proposition 5.3. 4 preference relation ' on the set II of simple probability

distributions on a set X satisfies

a. ‘= is complete and transitive,

b. forallm p, ¢, and ¢' from Il and a € [0, 1], ar + (1 — a)p =—ap + (1 —
a)p if and only if ar + (1 — a)p' = ap + (1 — a)p’, and

c. if w'— p, then for any third lottery ¢ there exists a* € (0, 1) such that
art(l — a)p = p and t — ap + (1 — a)p for all a such that a* < a <1,

if and only if

T=p ifandonlyaf Z U(x)m(z) > Z Ux)p(x)

TEsuppiT) TEsupplp)

for some function U : X — R. Moreover, if U provides a representation of ‘~—

in this sense, then V does as well if and only if V () = AU() + B for constants
A > 0andB.

This is quite a mouthful, so let’s take it in pieces. First, a, b, and ¢ provide
three axioms or properties for preferences — that give the representation. Axiom

a should come as no surprise affer Chapter 1. Axiom b is offen called the
independence or substitution axiom in this setting. Axiom c essentially says
that preferences are continuous in probabilities.

Second, these three axioms are necessary and sufficient to give an expected-
utility representation; that is, "~ is represented by a function u : I7 — R which

has the form

wm= Y w@U@) (5.3)

TEsupp(T)

[S3]
[&%]

for some function U : X — R.



Third, functions U : X — R that work in this fashion for given preferences
— are all positive affine transformations of one another.

Compare with the subjective expected-utility representation (5.2). In both,
prizes flom X have associated utility levels U(x), and the value of an
act/probability distribution is the mathematical expectation of the utilities of the
prizes. In Equation (5.2), utilities are weighted by subjective probabilities of
states. In Equation (5.3), the exogenously given probabilities (that describe each
7) are used. (Since the probabilities are not a subjective product of the person
whose preferences we are representing, but instead are presumably the product of
an objective modeler, they are called objective probabilities, to be distinguished
from the subjective probabilities of (5.2).)

Comparisons between Savage’s Sure-Thing Principle and property b are
immediate. Think of 7 & § (in the state-space approach) as an event of
probability a, and az + (1 — a)p is, roughly, “z on T and ¢ on TC.” If we make
this rough and informal translation, when we compare ar + (1 — a)p with ap +
(1 — a)p, we are comparing two gambles that difer on the a-probability event T
and are the same on the complement of this event. Savage’s Sure-Thing
Principle says that in terms of how the two compare, it doesn’t matter how they
are the same. So, in this setting, it doesn’t matter that they are both ¢ on this
complementary event, or that they are both ¢".

The continuity property ¢ can be stated in many ways; the one here was
chosen to look the most like continuity as defined in Chapter 1. It says that as
we move from 7z to ¢ by taking convex combinations az + (1 — a)p of the two,
fora close enough to 1 (so the convex combination is close to z), the
combination is “close” in preference to 7.

The rest of the chapter

This completes our survey of the basic models—how they differ, what sorts of
representations are used, and what properties of preference drive the
representations. We now have to justify what we’ve said. In Section 5.2, we
prove Proposition 5.3 by first proving a very general (and useful) result known
as the Mixture-Space Theorem; then we discuss how to extend Proposition 5.3
to probability distributions that are not simple. In Section 5.3, we discuss how
to get representations (5.1) and (5.2); note that we have not yet stated a formal



proposition leading to those representations. Section 5.4 discusses subjective
vs. objective probabilities. And we wrap up in Section 5.5 with a brief
discussion of empirical and theoretical problems with these models.

5.2. The Mix ture-Space Theorem

The proof of Proposition 5.3 enlists a general result known as the Mixture-
Space Theorem. The setting for this result is an abstract space Z, in which it is
possible to take mixtures or convex combinations ofitems: For all pairs z and z'
inZ and for all @ € [0, 1], there is an elementaz + (I —a)z’ inZ. It is
assumed that the “usual” rules of convex combinations hold, such as 1z + 0z’ =
z,az + (1 —a)z =z a(az +(1 azy+(1-a)a"z +(1-a")z) = (aa' +(1-a)a")z +
(1-aa" - (1-a)a":z', and az + (1 — a)z'= (1 — a)z' + az.’

The space of simple probability distributions /7 over an arbitrary space X is
a mixture space. We use two other classes of examples in this chapter.

1. Any space of probability distributions over some space X of prizes that is
closed under the taking of convex combinations is a mixture space.
Suppose, for instance, that X =R. IfZ is the space of probability
distributions on X with continuous density functions, or the space of
probability distributions on X with countable support, or (if you know what
this means) the space of Borel probability measures on X; ifZ is any of
those spaces, then Z is closed under the taking of convex combinations (the
convex combination of two probability distributions with continuous
density functions is a probability distribution with a continuous density
function, etc.), and Z is therefore a mixture space.

2. Let S be a finite set, let X be an arbitrary set of prizes, let /7 be the space of
simple probability distributions on X, and let H = I, That is, elements of
H are S -dimensional vectors of simple probability distributions on X. We
use the notation 4 to denote a member of H, A(s) (for s € S) to denote the
s-component of & (therefore, A(s) € I1), and h(s)(x) (fors € S and x € X)
to denote the probability of the prize x according to the simple probability
distribution A(s). For 4 and 2" members of H and fora € [0, 1], let ah+
(1—a)h’ be the member of H whose s component is ak(s) + (1 — a)h'(s); that
is, take convex combinations component by component. This makes H a
mixture space. (If you do not quite understand this example, we draw some



helpful pictures later in this chapter.)

Although the elements of some mixture spaces are not probability
distributions or lotteries in any sense, I use the term “lottery” informally to refer
to a member of an arbitrary mixture space for the remainder of this section.

Proposition 5.4 (The Mixture-Space Theorem, Herstein and Milnor 1953).
A preference relation — on a mixture space Z satisfies

a. ‘= is complete and transitive,
b. forallz z', &, and &' fromZ and a € [0, 1], az + (1 —a) & = az' +
(I —a) &ifandonlyifaz+ (1 —a) &' =—az'+ (1 —a) &' and

¢ ifz 'z, then for any third lottery z" there exists a* € (0, 1) such that
azt(l—a)z" ' z'and z *=— az' + (1 — a)z" for all a such that a* < a <1,

if and only if a function u : Z — R exists such that
d. z'— z'if and only if u(z) > u(z') (that is, u represents '~ ), and

e u(az+ (1 —a)y)=auiz)+ (1 —auE)forall z, 2’ € Z and a € [0, 1]
(that is, u is linear in convex combinations in Z).

Moreover, if u represents ‘— in this sense, v: Z — R is another representation

(that is linear in convax?ombinations) if and only if W) = Au(-) + B for
constants A > 0 and B.

The proof of this proposition comes in three pieces: (1) properties a, b, and ¢
imply the existence of a function u that satisfies d and e; (2) a function u
satisfying d and e implies that the corresponding preference relation satisfies a,
b, and c; and (3) in either case, the representing u is unique up to positive affine
transformations. The second of these three pieces is relatively straightforward, so
I leave it to you to do.

Five lemmas



The first piece of the proof is the longest and hardest. It begins with five
lemmas. The first of these is a simple matter of definitions, applied to property
b. Since property b is stated as an if and only if the negation of either side
implies the negation of the other. Hence:

Lemma 5.5. Property b is equivalent to

b' forall z and z' from Z and a € [0, 1], if az + (1 — a) i: waz'+ (1 —a)
i for some & € Z, thenaz+ (1 —a) &' az'+ (1 —a) &' forall &' €
i s s X =

both of which are equivalent to

b" forall z, z', &, and &' fromZ anda € [0, 1], az+ (1 —a) & '— az' + (1
—a) i: ifan;only if.:zer (1-a) :“3:’ e az'+ (1 —a) :?:'. T

Moreover, any of b, b', or b" imply that for all z, 2, #, and &' from Z and a
E€0,1 az+ (1 -a)# ~az'+ (1 —a)& if and only if az + (1 — a) #'~az' +
1-a.

Please note: because we assume az + (1 — a)z’ = (1 — a)z’ + az, each of b, V',
and b", as well as their implication in the lemma just stated, could be stated
where the substitution occurs in the first term of the convex combination. That
is, b is equivalent to a & +(1-a)z —a & +(1 a)z' if and only ifa: i'” +(1-a)z
a#'+(1-a)z', and so forth.
For the rest of the lemmas, it is assumed that '~ satisfies a, b, and c of the

proposition.

Lemma 5.6. If z '— z' then z '— 0.5z +0.5z" — z" If z ~ z, then z ~ 0.5z
+0.5z" ~z"

Proof. Suppose z ~ z' but, contrary to the statement in the lemma, 0.5z +
0.5z "' z. Writez = 0.5z+0.5z, and apply property b” to 0.5z+0.5z '~
0.52+0.52 by changing the “common”z to az’, to getz' = 0.5z' + 0.5z _'}—
0.5z'+ 0.5z = 0.5z + 0.5z" '~ z. Hence, by transitivity of %=, 0.5z + 0.5z "~

9



z implies z' }_ z, a contradiction. Similarly, if z' *— 0.5z+0.5z', property b”
can be used to show that 0.5z+0.5z" “— z (do it 1fy0u don’t see the steps), and
then by transitivity, z' — z, again a contradiction.

Suppose z ~ z' but (752 + 0.5z' — z. Rewrite the second part as 0.5z + 0.5z
= 0.5z+0.5z, which (by b) implies thatz' = 0.5z40.5z" =~ 0.5z+0.5z =
0.5z+0.5z" *— z; apply transitivity to derive a contradiction. The case z *— 0.5z

+ 0.5z' is handled similarly. -

Lemma 5.7. If z %~ z"and a, b € [0, 1] are such that a > b, then az + (1 —
ay''s—bz+ (1 =b)yz" Ifz~z', thenz~az+ (1 —a)z'~z'for all a € [0, 1].

Or, in words, when taking convex combinations of lotteries, one of which is
strictly preferred to the other, preference is “strictly monotone” in the weight of

the better lottery in the convex combination.

Proof. Suppose z — z'. By Lemma 5.6, z %~ 0.5z + 0.5z" — z". I assert that il

0 < ko< j o< 2 for and n  integers, then
. 2yt )z f Th f is b
¥4 [ 1 = 5 (1 o e proof is by

1nduct10n in n. Suppose the result is true for n, and take any integer E such that
0< E < 2". By the induction hypothesis applied to n, 1{_‘ in the role of &, and 1{
+ 1 in the role ofj,

£+1 f+1 4 /
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hence by Lemma 5.6,
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A simple application of transitivity gives the induction step and the result.
Continue to supposez *— z', and take anya € (0, 1). We know by

property c that a’z + (1 — a"z' ' a2’ + (1 — a")z' = z' for all a’ sufficiently close

to one. Moreover, we can find such an @’ such that ; — _!-i'_ﬁﬂl for some

integer j and n. Therefore, by the previous paragraph,
3 5 1ot g 3 X 5
—f(a 2zl =@ )yt | T—— k& =2
ar omn

which is az + (1 — a)z’ '~ z'. By a similar argument, we can show that z — az
+ (1 —a)"

And not take arbitrary a, b € (0, 1) with a > b. By the previous paragraph,
az + (1 — a)z' = z'. Applying the paragraph again, regarding bz + (1 — b)z' as a
convex combination ofaz + (1 — a)z"and z', yields az + (1 — a)z' = bz + (1 —
b)'.

Next, in exactly the manner of the first paragraph of this proof, use induction
and Lemma 5.6 to show that ifz ~z', then az + (1 — a)z' ~ z ifa is of the form
k/2" for integers k and n. Extend this to all a € [0, 1] as Dllows: suppose z ~ z'
but, for somea € (0, 1), az + (1 — a)z' — z. Property c implies that for all a'
greater than but sufficiently close to a, az + (1 — a’)z' %~ z. One such a' is of
the form £2", a contradiction. The case where z *— az + (1 — a)z’ is handled
similarly. -

Lemma 5.8. Suppose z ~ z'. For any third z" and any a € [0, 1], az + (1 —
az"~az'+ (1 — a)z"

Proof. Suppose that z ~ z' but, for some g and z”, az + (1 — a)z" —az' + (1 —
a)z". Apply property b to change the common z” to z', getting az + (1 — a)z’ '~
az'+ (1 — a)z' = z', which contradicts Lemma 5.7. A symmetric argument rules
outaz+ (1 —az"=—az+ (1 - a)"



Lemma 5.9. Suppose z '~ z'— z". Then for some a* € [0, 1], a*z + (1 —

a*)z" ~z' And if, in addition, z *— z", then this a* is unique.

Proof. Taking the last statement first, the uniqueness of a*, if it exists, is
immediate ffom the first part of Lemma 5.7. As for the existence of a*: Ifz ~ z”,
then z ~ z'~ z" and any a* will do. So we can assume that z % z". Ifz' ~ z, a*
= 1 works; ifz'~z", a* = 0 works; so we can assume that z — z" = z".

Leta* = infla € [0, 1] :az + (1 —a)z" = z'}. Sincez % z' % z",
property ¢ ensures that a* € (0, 1).

Suppose that a*z + (1 — a*)z" *— z'. By ¢, some strict convex combination
ofa*z + (1 — a*)z" and z" is strictly prefrred to z'. This would be az + (1 —
a)z" ' z' for a < a*. But the definition of a* precludes this: For all a < a*, z’
e azt(l-a)z".

Or suppose that z'— a*z +(1—a*)z". Then ¢ implies that z’ is strictly
preferred to a strict convex combination of a*z + (1 — a*)z" and z, which is az +
(1 — a)z" for a > a*. But ifa > a*, then there is some b € [a*, a) such that bz
+ (1 —b)z"' z, and Lemma 5.7 implies thataz + (1 —a)z"'— z', a
contradiction.

The only possibility left is a*z + (1 — a*)z" ~z".

Finishing the first piece of the proof

With these five lemmas, we can finish the first piece of the proof of the Mixture-
Space Theorem; that a, b, and ¢ imply the existence of a linear-in-convex-
combinations representation u. In fact, here I am going to do something less. I
will prove this with one extra assumption:

For some = and ¥ inZ, & ' z = ¥ forallz € Z.

¥
Or, in words, Z contains a best and worst element. This assumption is not
necessary to prove the result, but it does simplify things. For the proof of the
proposition without this assumption, see Problem 5.3.

If % ~ 2, then every element of Z is as good as every other. Therefore, any
constant function u works. Having disposed of this case, we move to the more



interesting case where & — .

Take any z in Z. By LemEa 5.9, there exists a unique a € [0, 1] such that
z~a% + (1 —a)f. For each z, let u(z) be this a; that is, for eachz € Z, z ~
UET + (- uE)z

By Lemma 5.7,_u gives a numerical representation of — on Z : Compare z
and z'. Because z ~ u(@)F + (1 — u() 2 and z'~u@)F + (1 - u@)% .

z = z'ifand only ifu@) T + (1 — u@) % = uE)T + (A - u@)Z,

which, according to Lemma 5.7, is true ifand only ifu(z) > u(z").
And u is linear in convex combinations of lotteries. Fix z, z/, and a € [0,
1]. Because z ~ u(z)7 + (1 — u(z)) , by an application of Lemma 5.8,

azt+ (1 - a)g'~au@z + (1 —u@)2 ]+ 1~ a2
and, by a second application of Lemma 5.8 based on z'~ u(z)F + (1 — u() %,
this is indifferent to

au@7 + (1 - u)z] + (L - ) u(')z + (1 - u(z :]

[au(z) + (1 — a)u()|7 + [1 - (au(2) + (1 - a)u(z))) 2.
Therefore, by the definition of u,

u(az + (1 — a)z’) = au(z) + (1 — a)u(z’).
]

This proofis central to much ofthis chapter, so it pays to take a minute and
reflect on how it works. Using the extra assumption, we use Lemma 5.9 to
measure or calibrate every z € Z by finding the (unique!) convex combination
of = and % that is indiferent to z. This gives a numerical representation of

preferences, because we know (Lemma 5.7) that preferences are strictly monotone



in probabilities when we take convex combinations of two lotteries, one better
than the other And this gives a representation that is linear in convex
combinations because convex combinations are themselves linear, and Lemma
5.8 tells us that we can substitute any lottery in a convex combination with any
other lottery indiferent to it; in particular, with the appropriate convex
combination of 5 and 3.

The third piece of the proof of the Mix ture-Space Theorem
Suppose u gives a mixture-space representation of '~ . Define v: Z — R by Wz)

= Au(z) + B for constants 4 > 0 and B. Sincev is a strictly increasing
transformation ofu, v represents '~ since u does. And it is straightforward to

see that v is linear in convex combinations:
vz +(1-a)) = Au(oz + (1= a)2) + B = Alau() + (1 - ajuz)] + B
= a[Au(z) + B + (1 - a)[Au(") + B] =av(z) +(1- aj().

Suppose both u and v give mixture-space representations of . Ifz ~ z’ for
allz € Z, thenu and v are both constant; hence W) =u() + B for some
constant B. So we can assume that z — z’ for some pair z and z’. Pick such a
and ¥ Z, respectively. (We are no longer assuming

pair, denoting them by 7=
that these are best and worst in Z, Z, but only that 7 = ¥.) Defineu* : Z — R
and v¥ : Z — R by

u(z) — u(2) w(z) — v(2)
u'(z)=s—— and v'(2)= ——

u(Z) — u(z) v(Z) — v(z)
The function u* is a positive affine transformation of u; hence u* represents *~—

and is linear in convex combinations. Similarly, v* is a positive affine
transformation  of'v; therefore v*  represents =~ and is linear in convex

combinations. Moreover, u*(7F) = v*(F) = 1 “and u*( ) = v*( ) =0, by



construction.

I assert that u*(z) = v¥(z) for every z € Z. Once this assertion is proved, we

are done with the third step: v is a positive affine transformation of v* (find the
constants if you are unsure about this), which is u*, which is a positive affine
transformation of u. Therefore, v is a positive affine transformation of u, which is
what we want to show.

To prove the assertion that u*(z) = v*(z) for every z € Z, we take three

cases:

1.

e z% 2

]

since & = ', Lemma 5.9 tells us that there exists a

unique_a S E, l_] such that a7 T(l — )% ~ z. Therefore,
w@=uraz +t (o)) =a*(@+ (A -au*(Z)=q

where the first equality follows because u* represents “—, the second
because u* is linear in convex combinations, and the third because u*(7) =
1 and u*() = 0. But exactly the same chain oflogic shows that v¥(z) - a.
Therefbre,_u*(z) = v¥*(z) for every z such that 7 ' z == .

Ifz — 7, then z — %', and Lemma 5.9 tells us that there is a unique a

€ (0, 1) such that az + (1 — @) ~ 7 and, therefore,

1=u*(@) = u*az + (1 —a)F) = au*@) + (1 — au*(F) = au*(2).
Therefore, u*(z) = 1/a. But the same argument applied to v* will show that
Vv¥(z) = l/a.
If & ' z, then Lemma 5.9 tells us there is a unique a € (0, 1) such that

a7 + (1 —a) ~ %, which means that a + (1 — a)u*(z) = 0, or u*(z) = a/(a

— 1) for this a. The same logic tells us that v¥(z) = a/(a — 1).

Therefore, v* = u*, and the third piece of the proofis done.



Using the Mixture-Space Theorem to prove Proposition 5.3

Having proved the Mixture-Space Theorem, we can finish off the proof of
Proposition 5.3. Again there are three pieces: that the three properties imply the
existence of a function U : X — R such that expected utility computed with
respect to U represents preferences; if preferences are represented by expected
utility for some function U : X — R, then preferences satisfy the three properties;
and two utility fanctions U and ¥ on prizes, both of which give expected utility
representations of given preferences, are positive affine transformations of one
another.

Again, I leave the second piece to you. As for the first piece, /7 (the space of
simple probability measures on X) is a mixture space and, ifthe three properties
hold, the Mixture-Space Theorem guarantees that there is a function u : I7T — R
that represents *— and that is linear in convex combinations. For x € X, define

Ux) = u(d,) (WE:re 3, recall, is the probability distribution that gives x with
probability 1). T assert that

w(m) = Z Ulz)m(x),

Tesuppim)

for each # € I, which, once proved, gives the first step. To see that this is so,
we induct on the size of the support of z. If the support ofz contains a single
element, so that 7 = 3, for some x € X, the result is true by the definition of U.

Suppose the statement is true for any 7 with n or fwer elements in its support.
Take some 7 withn + 1 elements in its support. Let x, be any one of the

elements in the support of z, so that 0 < m(x,) < 1. We can write

= m(xp)d, + (1 — 7(xg))p

where p is a lottery with supp(p) = supp(z) \ {x,} and, forx € supp(p), p () =
a(x)/(1 — m(x;)).

Because u is linear in convex combinations,



u(m) = mxp)u(S o) + (1 — lxg)u(p) = mxp)Ulxg) + (1 — mx)u(p)-

Because p has a support with » elements, the induction hypothesis applies to it,
S0

u(p) = Z p)() = E lni{’(ar); therefore

u(m) = mag)U () + (1 - m(xg) z %[’(x) 2 Z m@)U(z).

oEsupplp) z&supp(n)
Only the third piece remains. Suppose U gives an expected utility
representation of — on /7 and V (-) = AU(*) + B for constants 4 > 0 and B.
Define u and v both from I7 to R by

u(m) = Z Uz)r(x) and v(m)= Z V(x)m(x).

TEsuppir) xEsupp(m)

It is easy to see that both u and v are linear in convex combinations, and W) =
Au(-) + B. Therefore, v gives the same preferences on /7 as does u, which means
that V' gives the same expected utility representation on /7 as does U.
Conversely, if U and V' give the same expected utility representations on /7,
defining u and v as above and applying the Mixture-Space Theorem tells us that
v is a positive affine transformation ofu. Since U(x) = u(8,) and V(x) = W3,) for

all x € X, Vis a positive affine transformation of U. -

Expected utility for nonsimple lotteries



(This subsection requires substantially more mathematical sophistication than
what precedes and what follows it. Apologies are tendered to readers who find
this tough sledding.)

The proof of Proposition 5.3 establishes an expected-utility representation for
simple probability distributions on an arbitrary prize space X. It would be nice
to extend this result to more complex spaces of probability distributions; for
instance, to the space of probability distributions with countable support on
some arbitrary space X, or to the space of probability distributions on R with
continuous density finctions, or to the space of Borel probability measures on
Rk, and so forth. Needless to say, to make this work, we must know what is
meant by integration with respect to the probabilities in question (expected
utility is, in general, a matter of integration). And we must worry about what do
to if the expected utility of some probability distribution is either +o0 or —co or,
worse, ifthe positive and negative parts of the integral both diverge.

But setting aside for the moment these “technical” concerns, is it clear that
such extensions will be possible? That is, suppose — is defined on some rich

space of probability distributions or measures on some prize set X. Assume that
this space is closed under the taking of convex combinations, so that the space,
denoted P, is a mixture space. Suppose “— satisfies the three mixture-space

properties, properties a, b, and ¢ fom Pr(;osition 5.4. Does this imply that
there is some function U : Z — R such that expected utility calculated using U
represents ‘- ?

The Mixture-Space Theorem takes us a good deal of the way to a positive
answer. Specifically, the three properties imply that some function v : P — R
that is linear in convex combinations represents . But going ffom u defined

on P to U defined on X in the manner of the proof of Proposition 5.3 is not
going to work; the proof consisted (essentially) of using the linear-in-convex-
combinations property finitely many times, which suffices only if the probability
distributions in question have finite support. Of course, just because the proof
we used does not work does not imply that the result is false. But the result is
false, as the llowing example shows.

Let P be all probability distributions on X = R that are convex combinations
of simple probabilities and probabilities that have a continuous density that has
compact support. That is, each p € P can be written as ax + (1 — a)f, where ©



€ [Tand f'is a continuous density that is zero outside of some compact set (that
changes with f). To be very precise, the probability assigned by p = ar + (1 —
a)f to any (measurable) subset Y S R is

pY)=a Z mr) + ('l—a}]f{xjd;r.
Y

oY rsuppim)

I assert that any such probability has a unique decomposition into its simple (or
discrete) part and its continuous-density part. I further assert that this space is
indeed closed under the taking of convex combinations; that is, it is a mixture
space. (You are leff the job of verifying these assertions.)

Define a function u : P — R by

war+(1—a)f) = a Z rm(z) + (1-—a).

xesupp{m)

I assert that this function u is linear in convex combinations (more work for
you), so we know that if preferences are defined by this utility finction—that is,
p = p'ifu(p) >u(p’—then “— must satisfy a, b, and ¢ of the Mixture-Space

Theorem. But I assert that these preferences cannot have an expected-utility
representation. For if U : X — R gave an expected-utility representation, then by
looking at probability distributions in P that are entirely simple (such that the a
in ar + (1 — a)f equals 1), it is not hard to show that U(x) must take the form
Ax + B for constants 4 > 0 and B. (Essentially, use the definition of # and the
uniqueness part of Proposition 5.3.) But then consider ﬁ' = 3,—the simple

probability distribution that gives 2 with certainty—and ij = any probability

distribution that is purely a continuous-density probability with support [3, 4].
IfU(x) = Ax + B for 4 > 0, then the expectation of U taken with respect to j} is

U(2) = 24 + B, while the expectation of U taken with respect to }:'; can be no
less than 34 + B, because the integrand U(x) >34 + B for all x in the support of



JT} Expected utility will tell us that }} — 3 But it is easy to compute that u(
I}) =2and u(f)) =1, s0 ﬁ; - Jf') Oops.

The example suggests a possible cure for the problem it presents: In the
example, the lottery f} gives a prize of 2 with certainty. The lottery Jf'j. gives

prizes between 3 and 4. That is, with probability 1, f) gives a prize that, taken
as a sure thing, is strictly preferred to the (sole) prize possible under fj And yet
ﬁ' o JT} How about adding to properties a, b, and ¢ a property that rules this

sort of thing out? (I hope you agree that this sort of thing constitutes
unreasonable behavior in terms of someone’s preferences.) In fact, this line of
attack, suitably generalized, does work; you can see how in Fishburn (1970).

I prefer and will formalize a somewhat diferent cure. (At this point, the math
level goes up another notch or two.) Assume that X, the set of prizes, is a nice
subset of R¥ for some k* and that P is the space of Borel probability measures on
X. Add to a, b, and c of the Mixture-Space Theorem the assumption

Preferences '~ are continuous in the weak topology on P.

We have only discussed continuity of preferences for preferences defined on
subsets of Euclidean space RF, so to make sense of this definition, we must say
what is meant by continuity, and we must identify the weak topology. Defining
continuity is not hard: Preferences are continuous in a given topology if, for
all p, the sets {p' :p''— p} and {p' : p '~ p'} are open. But providing a
formal definition of the weak topology here is probably fiuitless: It is
unnecessary for readers who have studied the concept before, and it is unlikely to
be helpful for readers who have not done so. This is something for which an
appropriate textbook must be consulted. But it may give a bit of the flavor of
the weak topology to say the following. For any probability measure p on X, we
can construct a sequence of simple probability measures {p,} such that lim, p,

= p in the weak topology.” If we have a, b, and ¢ fiom the Mixture-Space
Theorem, we know that there is a functionu# : P — R, linear in convex
combinations, that represents '—. We can define U : X — R by Ux) = u(3,);

the continuity of '~ in the weak topology can be used to show that U is a



continuous function. Finally, define u': P — R by u'(p) = IX U(x)p(dx). Use the
argument flom the proof of Proposition 5.3 that shows that u(z) has the
expected-utility form, to show that # and u’ agree on all simple probability
measures; then use continuity and the sort of approximation of any p by a
sequence of simple p, mentioned to show that u’' does in fact give a
representation of —. (Except for knowing about the weak topology, the steps
are not that haIdA)_Let me give this as a formal proposition (which I do not
prove):

Proposition 5.10. Suppose X = RF (or Rk ) and P is the space of Borel
+
probability measures on X. If preferences ‘— defined on P satisfy a, b, and ¢

of the Mixture-Space Theorem and are also continuous in the weak topology,
then there exists a bounded and continuous function U : X — R such that

u(p) = f U(2)p(da)
X

represents ‘=~ . (Conversely, for any bounded and continuous function U : X —

R, u defined in this fashion gives preferences that satisfy a, b, and ¢ and that
are continuous in the weak topology.)

Note that, in this proposition, the utility function U must be both bounded
and continuous. If you know about the weak topology, continuity should not
come as a surprise; if {x,} is a sequence of prizes with the limit x, then in the
weak topology, 8., — J . (This doesn’t prove that U must be continuous, but
it is the first step in a proof) But the boundedness of U has to be rated as
something of a ... disappointment, if we were planning to use this proposition
for the sort of applications one finds littering the literature of economics,
especially financial economics, in which the utility function of choice is the
unbounded function U(x) = —e ™ Pr some A > 0, and probability distributions
that are Normal are among the objects of choice.

The reason that Proposition 5.10 produces a bounded U is not too hard to



see. The Mixture-Space Theorem produces a function # : P — R. That is, the
“utility” of each lottery or probability distribution must be finite. That, in turn,
is something of a consequence of mixture-space property ¢, which says that no
matter how good or bad is some p", ifp *— p’, then mixtures ofp’ and p” with
most (but not all) of the weight on p’ are worse than p (so p” cannot be
supergood) and mixtures of p and p” with most (but not all) of the weight on p
are better than p' (so p" cannot be superbad).

Suppose, then, that U was unbounded. In the context of Proposition 5.10, P
contains probability distributions that are discrete but with countable support.
Suppose, specifically, that U is unbounded below. This means that for each £ =
1, 2, ..., we can find somex;, such that U(x) < —2% Then construct the

(countable support) probability distribution p* whose support is {x|, x,, ...}
and that assigns probability 12F to x;.. Expected utility for this probability

distribution is —oo. That is, u(p*) would have to be —oo, which the Mixture-
Space Theorem does not allow.

Nowhere in Proposition 5.3 does it say that U is bounded. No such
restriction is needed (more precisely, is implied by the three mixture-space
properties a, b, and c), because in Proposition 5.3, only simple (finite support)
lotteries are allowed. Even if U is unbounded, you cannot produce within /7 a
supergood or superbad lottery (one with expected utility either +oo or —0). Put
another way, when applied to a relatively *“poor” mixture space like /I—poor in
the sense that it does not contain a lot of probability distributions on X—
property ¢ is a lot less strong than when it is assumed for a “rich” space of
probability distributions (those with unbounded support).

Still, there is that disappointment to deal with: To do lots of interesting
financial economics, we want to have models in which utility functions take the
form Ulx) = —¢™ and lotteries on prizes are Normally distributed. If you
consult the literature of finance, you will quickly appreciate the analytical
conveniences of this pair of parameterizations. Can we find some way to
“legitimize” models that use this pair of parameterizations?

Without going into details, it can be done. The key is to find a mixture
space P that is restricted enough that property ¢ doesn’t limit you to bounded
U. In the context of X = R, if you assume that the P contains only distributions



)
whose tails vanish on the order of] say, e kx (a space that includes all Normals
and all finite mixtures of Normals), then you may have utility functions that are
unbounded, as long as their rates of growth and decline are suitably limited. In

particular, with tails that vanish on the order of eik"z, growth/decline that is
exponential or less is fine. Having said this, a comment on the literature is
worth making. Results of the sort indicated in this paragraph are possible, and
they would save the parameterizations that are much used and loved by financial
economists and others. But if anyone has ever published such results, I am
unaware of them.

Another version of the Mixture-Space Theorem

The independence and continuity properties b and ¢ in Propositions 5.3 and 5.4
are not entirely standard. I chose a formulation of property b that makes
comparisons with Savage’s Sure-Thing Principle as straightforward as possible
and eases (a bit) difficulties in the proof But in place of b and ¢ you will ofien
find equivalent pairs of properties, such as b’ and ¢’ in the following
proposition.

Proposition 5.11. Suppose — defined on a mixture space Z is complete and

transitive. Then "~ satisﬁes_b and ¢ of Proposition 5.4 if and only if —

satisfies

b Ifz —z', then for alla € (0, 1)andz" € Il, az+ (1 — a)z" = az' + (1 —
a)z", and

¢ Ifz 'z z", then there exist a, b € (0, 1) such that az + (1 — a)z" *— z'
W bz + (1 — b)".

Therefore, b’ and ¢’ (with a) are necessary and sufficient for the mixture-space
representation, which is unique up to positive affine transformations. In fact, an
easy way to show that b and ¢ imply b’ and ¢’ (ifa holds as well) is to note that
b and c give a mixture-space representation, which almost immediately can be
shown to imply b’ and ¢’. Conversely, if you can show that b’ and ¢’ (with a)
yield a mixture-space representation, then the converse half of Proposition 5.4



shows that b’ and ¢’ imply b and c. I won’t give the proof of the Mixture-Space
Theorem using b’ and ¢’ instead of b and c; see Kreps (1988) or Fishburn
(1970) for the details.

5.3. States of Nature and Subjective Expected Utility

Now we return to the states-ofnature approach, looking for justifications for
additively separable and subjective expected-utility representations (that is,
representations ofthe forms (5.1) and (5.2)). As already noted, the classic way to
get (5.2) is due to Savage. But Savage’s development is fairly complex, so we
will we use the alternative and somewhat easier development due to Anscombe
and Aumann (1963).

Horse races and roulette wheels

We begin with set of prizes X and a set of states of nature S, out of which the set
ofacts 4 = X5 is formed. Throughout this section, we assume that S is finite.®
Consumer preferences are given over the set 4.

Anscombe and Aumann enrich this setup. Let /7 be the space of simple
probability distributions on X, with a typical element written as 7z, and call # €
II roulette lotteries, thinking of r as a gamble that is based on objects such as
well-balanced roulette wheels, very symmetric dice, and so on. That is, for
lotteries 7, the odds (probabilities) are objective because of the symmetry of the
randomizing devices employed.

Preferences '~ are extended from the set ofacts A to the space H = 15, Each

h € H is a fanction with domain S and range /7; for each state s, & specifies a
roulette lottery /4(s). The interpretation is that the states s represent the results of
things like horse races (the weather, the resolution of technological uncertainty,
and so on), and a horse-race lottery h is a gamble that, depending on the state
of nature s, pays off in a roulette lottery.

For example, imagine a betting ticket that pays the following: In state s;

(Secretariat wins), the consumer get $—2 for sure. (That is, she loses $2 for
sure.) In state s, (Kelso wins), she gets $3 with probability 1/2 and $1 with

probability 1/2. In state sy (a dead heat), she gets $6 with probability 1/3 and
loses $4 with probability 2/3. This sort of creature is depicted by a compound



chance node, as in Figure 5.6b, where the compounding is now an important
part of the mathematical formalism. (Panels a and c of this picture will be
explained momentarily.) In these pictures we use a solid node for the state-of
nature uncertainty and an open node for the roulette-based uncertainty.

(a)Anactinthe  (b) Ahorse-ace lotteryinhe  (¢) The actin panel a is
Savage framework  framework of identiied with this horse-race
Anscombe-Aumann lotiery in the Anscombe-Aumann

Figure 5.6. Acts and horse-race lotteries

Compare this with the setup with which we began. Previously, affer the
horse race was run and the state s was realized, the outcome was a prize x = a(s).
Now the “outcome” of the horse race is a lottery A(s) € II. Of course, 4 is
something of a subset of H; included in H are horse-race lotteries that pay off in
each state, in degenerate (single prize) roulette lotteries. (See Figure 5.6 for all
this said with pictures.) So you can think of this enriching of the space on
which consumer preferences are given as a thought experiment: Our interest,
ultimately, is in representing the consumer’s preferences on acts ffom 4. But we
ask the consumer to rank more objects than these, because properties of
preference on a larger space (insofar as those properties have the form For all...)
will be stronger properties, giving us more to work with when seeking a



representation.

Suppose 4 and g are two horse-race lotteries, and @ is a number between zero
and one. Define a new horse-race lottery, denoted ak + (1 — a)g, as follows: For
each state s, the new horse-race lottery gives as prize the roulette lottery ah(s) +
(1 — a)g(s), where this last object is defined as the usual convex combination of
the two probability distributions A(s) and g(s). Figure 5.7 gives an example of
this sort of operation.

An additively separable representation
Proposition 5.12. Suppose S is finite. Then preferences ‘— on H satisfy

a. ‘= is complete and transitive,

b. forall h, h', g, and g' from H and a € [0, 1], ah + (1 — a)g = ah' + (1
—a)g if and only if ah + (1 — a)g' '~ ah'+ (1 — a)g’, and



Figure 5.7. Taking mixtures of horse-race lotteries. When mixing horse-
race lotteries, you mix the lotteries for each outcome of'the horse race.

c. if h = h', then for any third horse-race lottery g there exists a* € (0, 1)



such that ah + (1 — a)g — h' and h — ah' + (1 — a)g for all a such that
a*<a<l

if and only if there is a function u : H— R such that
d. urepresents '~ h ‘— g if and only if u(h) > u(g), and

e. u has the form

uhy =Y Y U@hs)e), (5.6)

s 8w csupp(hie))

for functions U; : X — R, for each s € S. Moreover, if v is another such
representation of =, with accompanying state-utility functions V,, then there
exist constants A >_0, B, and B for s € S such that W(-) = Au(-) + B and each
V()=AU()+ B,.

Some commentary is in order before getting to the proof

1. It is probably obvious to you fiom a, b, and c that we are about to enlist
the Mixture-Space Theorem again. But before doing so, you might want to
consider whether, in the current context, a, b, and c¢ are sensible
assumptions to make about consumer preferences.

2. In the representation, we get additive separability across horse-race states s
€ S, and within each states, we get an expected-utility representation,
although the utility finction for state s can be quite different than that for s,
To evaluate a horse-race lottery 4, you must (1) use the states utility
function U to compute the expected utility of the roulette lottery /(s), for
each s separately, and then (2) add up the state-specific expected utilities.
When restricted to horse-race lotteries whose roulette lotteries are all

degenerate (sure-things), this specializes to the state-additive representation
(5.1).

Proof. As we remarked when we first introduced the concept of a mixture space,



the space H is a mixture space, where ai + (1 — a)h’ involves taking convex
combinations for each state s € S. Hence, the Mixture-Space Theorem, applied
to this setting, would pretty much conform to the statement of the proposition,
except that e would be replaced by

e’. u is linear in convex combinations

and we would not have the bit at the end concerning a comparison of the U, and
V. 1 leave it to you to prove that ifu : H — R has the form (5.6), then u is
linear in convex combinations; once that is shown, the Mixture-Space Theorem
tells us that d and e imply a, b, and c. Instead, I’ll assume a, b, and ¢, and pick
up the story at the point where the Mixture-Space Theorem has been applied
and we have produced a function u : H — R that represents *~ and is linear in
convex combinations. -

Fix (completely arbitrarily) some roulette lottery z° € I7. For each s € S,
and h € H, let ho(h, s) be the horse-race lottery that gives roulette lottery A(s)
in state s and the roulette lottery 70 in all other states. Let ° be the horse-race

lottery that gives 7° in every state, and normalize u so that u(h’) = 0. By
straightforward algebra,

1. N-1, .
Z—h‘ __,-Th-'-_,-‘,._.'h i (3.;)

8

’)'J

where N is the number of states. Because u is linear in convex combinations, we
therefore know that

Z —u (%R, 8)) = —u (h) + ‘I' u{h }-

acs

Since u(ho) has been normalized to be 0, the last term drops out. Multiply both
sides of what remains by N, to get



Z u(h®ch, )| = ulh).

=5
Foreachs € S, define u, : IT — R by
u () = u(h') where 4’ is  the horserace lottery  with
i w, ifs =5, and
hi(s") = § e bk
m, ifd #s.
With this definition, u(h°(h, 5)) = uy(h(s)), since 1Ok, s) is the horse-race lottery

with 7 in s and z° in all other states. Hence

Z w,(h(s)) = u(h).

Moreover, because  is linear in convex combinations on H, it is relatively easy
to show that each u is linear in convex combinations on /7; hence (because /1

consists of simple probabilities only) we know (fom the argument back on
pages 95 and 96) that each u has the form

U, () = E U, (x)m(x)
xcsuppiT)
where Uy : X — R is defined by Uyx) = uyd,). Putting everything together
gives (5.6).

Suppose that# and v are two different linear-in-convex-combinations
representations of —. We know that W) = Au(*) + B by the Mixture-Space

Theorem. Construct Uy and ¥ fiom u and v as above. Fix any xO, and define B



= V(% — AU,(O). Tt is immediate that =, B, = B. Now take any x € X and s’

€ S, and consider the horse-race lottery that gives *° with certainty for all s #s'
andx with certainty in states’ Under v, this has value

’ [J_} + Ea 1 ‘[«"-S{_‘]’rj}, while  underu it has value
["rs" (x) + Eaé’g-‘ ["r.s ':-IG} Since v = Au + B, this means

@)+) Vi) =Alld +Z )| +B= AU, WZH («)+BJ.

Cancel the two summations, since they are identical term by term, to obtain V.,
(x) = AU, (x) + Bgs; since x is free here, this tells us that V, = AU, + B,.
|

The trick

This late in the chapter, you may be feling a bit glassy-eyed and inclined to
accept the short proofjust given without worrying too much how it works. But
diligent readers may feel a bit cheated by the proof It isn’t clear (to most first-
time readers) how additive separability across states just popped out of a hat,
like the proverbial rabbit.

Let me sharpen the point this way. Suppose instead oflooking at horse races
that pay off in roulette lotteries, we had gone to the casino first and then the
racetrack; that is, we worked with the space of simple probability distributions
over the space 4 = X5. Since this is a space of simple probability distributions,
it is a mixture space, and the Mixture-Space Theorem applies. But the
conclusions of the Mixture-Space Theorem viewing things this way are much
weaker than the conclusions of Proposition 5.12. In particular, we do not get
anything close to additive separability across states. It is vitally important in
this theory that the horses run first. (Can you figure out why on your own? I
not, read on.)

The trick, if I may call it that, comes in the definition of convex
combinations in H. Let me illustrate with a very specific example. Suppose the



state space S = {s|, s,}, and the set of prizes X is {steak, chicken}, representing
dinners you might have. Consider the following four horse-race lotteries: /g
gives the consumer steak for sure in both states; 4, gives her steak in s, and
chicken in sy; A, gives her chicken in state s; and steak in s,, and /. gives her
chicken for sure, regardless of the state.

Imagine that the two states are equally likely in the mind of this consumer,
and she generally prefers steak to chicken. Imagine as well that this consumer’s
tastes in meals are not separable across states; that is, the value to the consumer
of a steak dinner instead of chicken in one state is affected by what she gets to
eat in the other state. To be very concrete, imagine that the value of steak
instead of chicken is enhanced ifiit is paired with steak in the other state, while
the value of a chicken dinner in one state is enhanced a bit if it is paired with
chicken. Under all these assumptions, if we offered the consumer a 50-50 convex
combination of 4. and /., or a 50-50 convex combination of 4, and 4, (where

50-50 convex combinations mean, determined by the flip of a fair coin), we
would expect her to prefer the former; that way she “benefits” by the
enhancement of the value of steak when it is paired with steak and chicken when
it is paired with chicken.

Since these preferences are not separable across states, they cannot be
represented by a representation of the form (5.6). Accordingly, we might
wonder, Which of a, b, and c is being violated in this example? The answer is,
It isn’t a, or b, or ¢, that rules this out. It is the formulation itself that makes
this impossible. To see why, note that, in terms of H, a 50-50 convex
combination of iy and /. is identical to a 50-50 convex combination of/g,

and h,; namely, each gives a coin-flip choice of steak or chicken in both states

ofnature. Our formal setup identifies these two convex combinations; since they
are the same thing, our consumer must be indifferent between them. This is the
key point, so let me say it again: When convex combinations are taken state by
state, without regard to what each constituent horse-race lottery gives in the
other states, state separability is implicitly invoked in the setup, before we get
to the mixture-space properties a, b, and c.

Indeed, you see this rather blatantly in the proof at Equation (5.7). We take
an arbitrary horse-race lottery # and “repackage” it in a convex combination



with a reference lottery as the convex combination of lotteries each of which
picks up a single state-component of 2. The two convex combinations give the
same overall lottery, so the consumer is forced to be indifferent between them.
But the repackaging immediately gives us additive separability, because it takes
“h plus a constant” and breaks this into a sum of terms, each of which depends
on a single component of 4.

If you are still fuzzy on this, I urge you to try Problems 5.4 and 5.5 (and, i
possible, discuss your answers with your colleagues).

Subjective expected utility

Proposition 5.12 gets us additive separability over outcomes of the horse race
and, for each outcome of the horse race, expected utility as in Proposition 5.3.
But the state-dependent utility functions U; needn’t bear any particular
relationship to one another We are seemingly a long way from a representation
ofthe form of (5.2).

Recall the discussion of umbrellas and suntan lotion from the first section,
and you will see what is missing. The mixture-space properties a, b, and ¢ do
not speak to the question, Is the value of a prize independent of the state in
which it is received? To finish the Anscombe-Aumann development, we need to
assume that the answer to this question is yes.

This requires a bit more notation. For z# € [T (a roulette lottery), write 7 as
an element of H (a horse-race lottery) meaning the horse-race lottery that gives,
regardless of the outcome of the horse race, the prize 7.

Proposition 5.13. For finite S, '— satisfies a, b, and c¢ of Proposition 5.12

and, in addition,

f. foreachs € Sand wand p € I, w'— p if and only if h *— g, where
h(s) =, g(s)=p, and h(s") = g(s") for all s' +s,

if and only if ‘— is represented by a function u : H — R taking the following

form:



u(h) =Z Z U(z)h(s)(x)|p(s). (5.8)

s£8 “xcsupplhl|s))

where U : X — R and p is a probability distribution on S with p(s) > 0 for all
s € 8. Moreover, U is unique up to positive affine transformations, and if
there exist x and x' such that U(x) # U(x"), then p is unique.

This is full subjective expected utility, with a state-independent utility function
U and subjective probabilities for the states, given by p.

The fourth assumption fis fairly blatant. Suppose 7, p, s, h, and g are as in
the statement of the assumption. Then % and g are identical on all states except
s (hence, under a, b, and c, it doesn’t matter how they are the same), and the
consumer’s preferences between / and g depends solely on how she feels about z
vs. p contingent on state s. However she feels, the assumption is that she feels
the same way between z-regardless-ofthe-state and p-regardless-ofthe-state.
Comparisons of roulette lotteries are independent of state.

Proof. The previous paragraph almost gives the proof away. Suppose '~

satisfies properties a, b, and c. Then we know we get a representation of the
form given in Proposition 5.12, specified by state-dependent utility functions
Us. Define for each state s the preferences '~  on /7 that are created by Uj; i.e., =

by p I Z AU = Tp(U). These are expected-utility prefrences in the
sense of Proposition 5.3, and so satisfy a, b, and c there. Moreover, for # and g
as in the statement of this proposition, # - g ifand only if7 '~  p. But then {
asserts that 7 = _ p ifand only if 7 '~ p, for all 7, p, s, and 5" Therefore, the
uniqueness part of Proposition 5.3 tells us that if we fix some 50, for each s #s°
there exists A(s) > 0 and B(s) such that Uy(x) = A(s)Uy(x) + B(s). Define U(x) =
Uyo() and p(s) = A(s) / e g A(s') (where we interpret A(sg) = 1). It is a matter
of straightforward algebra to see that (5.6) becomes (5.8).

This leaves the converse part of the proposition—the representation implies
the four properties—and the uniqueness claim. Both are leff for you to do.



It may be worth pointing out that in many treatments of Anscombe-
Aumann, the possibility that p(s) = 0 for some states is allowed. This takes a
modification of f to allow for states for which nothing (in terms of the lottery
won in that state) matters.

5.4. Subjective and Objective Probability and the Harsanyi Doctrine

At the start of this chapter, I said that representations of the form (5.2) are
sometimes called subjective expected utility. On the other hand, representations
of the form (and in the setting) of Proposition 5.3 are often called objective
expected utility. We can now explain what lies behind this terminology.

The probability distribution p in (5.2) orp in (5.8) is as much an
expression of the personal preferences of the consumer as is the utility function
u. To be very pedantic about this, consider betting on the next World Cup. We
will look at gambles whose outcomes depend only on whether the winner of the
next Cup comes from Europe (including Russia), ffom America (North or
South), or from the rest of the world, so we take a three-element state space S =
{51, 55, 53} where s; is the state that a European team wins the next World

Cup, s, is the state that an American team wins, and s5 is the state that some

other team wins.’ We will take the prize space X to be [0, 100], with numerical
amounts representing dollars won. Imagine that we give a consumer her choice
of the three gambles (fom the Anscombe-Aumann version of H) depicted in
Figure 5.8. Suppose she ranks the three as 4 *— h'*— h". If her preferences
conform to the Anscombe-Aumann axioms (and she prefers more money to
less), we interpret this as: Our consumer assesses probability greater than.48
that an American team will win and probability less than.48 that a European
team will win. By varying the probability in /4’ until we find the value that
makes her indifferent between # and /' (as modified), we find her subjective
probability that an American team will win. N.B., the subjective probability
she assesses for s, is (only) a construct of the representation guaranteed by the
Anscombe-Aumann axioms; it arises solely ffom her preferences for these
lotteries. If a different consumer expresses the preferences 7" — h''— h, we
conclude that the two consumers’ preferences are represented by different
assessments over the state space S; probability assessments (as an expression of
preferences) are subjective.



Horse-race lottery i Horse-race lotery ' Horse-race lotery "

Figure 5.8. Three Anscombe-Aumann gambles. Within the Anscombe-
Aumann framework, ifa consumer prefers horse-race lottery / to 4’ and i’
to h", she is implicitly saying that she assesses probability greater than
0.48 for state s, and less than 0.48 for state s,. Of course, this is implicit:

She is only expressing preferences among horse-race lotteries; nowhere (in
the theory) is she asked to assess a probability.

The probabilities in the roulette lottery parts of the gambles are meant, in
this story, to be objective; i.e., reflecting the physical reality of well-balanced
roulette wheels, symmetric dice, and so on (at least, to a reasonable degree of
approximation). All consumers are meant to agree to these probabilities. Hence
they can be used to calibrate subjective probabilities, just as we’ve done here.

The start-with-probability-distributions approach of Proposition 5.3 and
Section 5.2 seemingly makes the most sense in a world of objective
probabilities, because if probabilities are objective—reflecting physical reality
and agreed upon by all consumers—it is clear where they come from. Hence that
approach is labeled objective expected utility. Notwithstanding the label, this
general approach can be (and offen is) used with subjective probabilities, albeit
bearing in mind that ifthere is no objective basis for the probabilities, they enter



the model out of thin air.

Retumning to the full subjective model, there is a final point to make.
Economists (of a neoclassical stripe) rarely if ever insist that consumers have the
same ordinal preferences over bundles of goods. Individual consumers are
allowed to have individual preferences. In the same spirit, subjective
probabilities—another part of the expression of personal preferences—should be
allowed and even expected to vary across individuals. If this seems
philsophically correct to you, and it certainly does to me, you are forewarned
many eminent economists maintain as dogma (philosophy?) that two
individuals having access to the same information will inevitably express the
same subjective probability assessments. Any diference in subjective
probability assessments must be the result of diferences in information. Two
consumers betting on the World Cup might order the gambles in Figure 5.8
differently, but only if they have been exposed to different pieces of information
about the qualities of the various teams, etc. I leave it to others to defend this
assumption—see, for example, Aumann (1987, section 5)—as I cannot do so.
But you should be alerted to this modeling assumption, which has played an
important role in parts of pieces of modern microeconomic theory; it is called
both the common prior assumption and the Harsanyi doctrine.

5.5. Empirical and Theoretical Critiques

The models of expected utility maximization, with either subjective or objective
probabilities, are the standard models of choice under uncertainty employed by
economists. With the rise of behavioral economics and behavioral finance, it
may no longer be appropriate to say that they are the overwhelming choice of
economists who wish to model uncertain choices. But they are still chosen a
very high percent-age of the time, and certainly they still constitute the
overwhelming percentage of models in the literature.

These models are used both normatively—as tools recommended for use by
decision makers who themselves face a choice problem with uncertainty—and
descriptively, meant to model how decision makers make real-lif choices. I
won’t discuss the normative application of these models here; if you are curious
to see a normative treatment, find a textbook on strategic decision making or
decision analysis.8 Instead, here we discuss the use of these models in
descriptive economics.



In that context, the test is surely empirical: When we watch people making
choices under uncertainty, in the field or in the lab, does their behavior conform
to the models we have developed? Any number of studies have shown that the
answer is, Not precisely. And, moreover, choice behavior has been observed that
exhibits enough regularity so that one can contemplate better descriptive models
than these.

A vast literature documents the empirical failings of these models, and I
certainly will not try to catalog all the effects that have been observed. But I will
point out three major themes or threads that appear.

In each of these threads, the evidence comes from the laboratory. Individuals
are asked within the lab to make choices or statements of preference—"If you
could choose between gamble A or B, which would you choose?”—or—*“Do
you prefer gamble A or gamble B?” They are asked to compare A with B and
(later) A" with B’, and we look at the data to see if these pairs of
choices/preferences are internally consistent, according to the standard model. In
some experiments, the choices are real; there is some chance the individual will
actually get what she chooses/prefers. More offen, though, the exercise is
hypothetical.

Framing effects

Back in Chapter 1 (pages 22-3), we discussed the first of the three threads; the
problem of framing. Individuals choose differently between the “same” pair of
objects, depending on how those objects are framed (presented to them). We
discussed in Chapter 1 the Kahnemann and Tversky (1979) example of
vaccination programs, where the framing issue concerned whether outcomes were
presented in terms oflives saved or people condemned to death. And we
mentioned there tricks used by mail-order catalogs to convince you to buy their
products.

Kahnemann and Tversky (1979) go on to develop further the example of the
vaccination programs, in ways that are very significant for choices with uncertain
outcomes. In the example of the vaccination programs, one way to think about
what is happening is to think in terms of changes in the status quo: Is the status
quo the position today, where no one has died, and so one vaccination program
condemns some number of people to death; or is the status quo the no-
vaccination program outcome of 600 deaths, in which case that program has the



virtue of being sure to return some people to life?

Kahnemann and Tversky show evidence that, with monetary gambles, the
status quo position, especially with regard to losses and gains, matters. They
give their subjects choices such as

Gamble A gives you $400 for sure, while Gamble B provides $600
with probability 2/3 and $0 with probability 1/3

and they find a tendency to prefer the $400 for sure. But then they reframe the
choices:

To begin, you will be given $600 with which to gamble, which is
yours to keep if you so choose. Then you can choose between Gamble
A’, in which you lose $200 for certain, and Gamble B’, in which you
will lose nothing with probability 2/3 and $600 with probability 1/3.

Framed this way, they find subjects who previously preferred Gamble A now
preferring Gamble B’. In general, they present evidence that people are more
inclined to gamble to avoid a loss than they are to record a large gain, calling
this the “zero illusion.”

The Allais Paradox and variations

The second theme traces from the work of Allais (1953) and concerns the model
with objective probability. The classic so-called Allais Paradox asks an
individual to choose between the two lotteries in Figure 5.9a and then between
the two in Figure 5.9b.

A large fraction of the subjects express a preference for Gamble B in 5.9a and A’
in 5.9b, which is inconsistent with expected utility maximization for any utility
function; letting U be the individual’s utility function, a preference for Gamble
B over A means that

0.33U/(27500) + 0.66U(24000) + 0.01U(0) < U/(2400), and hence
0.330(27500) + 0.0L U(0) < 0.341/(24000), and hence
0.33U(27500) + 0.67U(0) < 0.34U/(24000) + 066 U/(0),



which implies a preference for B’ over A’. Kahnemann and Tversky (1979) go
on to divide the Allais-type inconsistency (with the expected utility model) into
two regular effects: individuals overvalue certainty; and they also overweight
small-probability outcomes.

(0.33)
$27.500
0.686
o0 $24,000 Oﬂ $24,000
(0.01) 50 Gamble B
Gamble A

{a) Choose Gamble Aor Gamble B

0.33 $27.500 (0.34) $24.000
<)< (0.67) S0 ()(:{]66: S0
Gamble A' Gamble B'
(b) Then choose Gamble A' or Gamble B'

Figure 5.9. The Allais Paradox. Many individuals prefr B to A and
simultaneously say that they prefer A’ to B’. This is inconsistent with the
expected utility model. (See text for further explanation.)

The Ellsberg Paradox

The third theme begins with the work of Ellsberg (1961) and draws a
distinction between uncertainty and risk. These terms, used in this fashion, refer



to a distinction that goes back in the literature to work by Keynes and Ramsey;
risk is used when the gamble in question has “known odds,” while uncertainty
refers to situations where the odds are “unknown.” T will not attempt to be
precise about the meanings of known and unknown odds, but the spirit of the
thing is that odds are known if they are determined by a fair coin or a balanced
roulette wheel, or if they come from some random event that has been repeated
enough so that the decision maker is confident she knows the chances of the
various outcomes. The odds are unknown, basically, ifthey are not known; that
is, if neither of these conditions hold. So, for instance, suppose I tell you I have
a bent coin, and I ask you (without letting you examine the coin or experiment
with it) to bet on whether the coin will land heads or tails. Since you don’t
know the odds of heads, you face uncertainty. If the coin is known a priori to be
fair, or if you have been allowed to flip it, say, one million times, and it has
come up heads 621,231 of those million, so the odds of heads are likely to be
very close to 0.621231, then the odds are (approximately) known.’

In most interesting economic contexts of choice under uncertainty, where
physical symmetry of the outcomes of random events is meaningless and where
past data are at best only a partial guide to the future, the decision maker faces at
least some level of uncertainty. So, choice under uncertainty should be of greater
concern to economists than is choice under conditions ofrisk.

The models of Savage and of Anscombe and Aumann (developed here) have
the decision maker choosing according to expected utility, employing
subjectively determined probabilities where there is uncertainty. Once
probabilities are (subjectively) assigned to uncertain outcomes and events, no
distinction is made between uncertainty and risk.

Ellsberg tested this as a descriptive model by posing the following
hypothetical decision problem. He described to his subjects an urn containing
300 colored balls: 100 red, and 200 some (unknown) combination of blue and
green. One ball is to be drawn at random from the urn. Then he asked:

Would you prefer: (A) a bet in which you win $100 ifthe ball drawn is
red (and $0 otherwise); or (B) a bet in which you win $100 if the ball
drawn is blue (and $0 otherwise)?

And he asked:
Would you prefer: (A’) a bet in which you win $100 if the ball drawn



is red or green (and $0 if it is blue); or (B') a bet in which you win
$100 ifthe ball drawn is blue or green (and $0 ifit is red)?

He asked this of fairly sophisticated decision makers, his colleagues at the
RAND Institute. And he found that a sizeable fraction preferred A to B and B’ to
A

The explanation of this pair of preferences is easy, given the distinction
between risk and uncertainty. The probability of winning $100 in A is 1/3; you
know 100 balls out of 300 are red, so it stands to reason that the probability ofa
red ball being drawn is 1/3. But you don’t know the number of balls that are
blue—you only know that it is between 0 and 200—so the odds of winning
$100 in B are unknown. And in B’, you know that 200 balls are either blue or
green, so the odds of $100 are 2/3; this is a situation of risk. While in A’, you
don’t know how many balls are red or green—it could be as fw as 100 or as
many as all 300—so this is a gamble with uncertainty. If you are averse to
uncertainty per se—that is, every thing else being equal (whatever that means),
you prefer risk to uncertainty, you will prefer A to B and B’ to A’.

But, of course, this is inconsistent with the Savage and Anscombe-Aumann
models of choice. It is perhaps easiest to see this by noting that the pair of
preferences A better than B and B’ better than A’ is a direct violation of
Savage’s Sure-Thing Principle, Axiom 5.1 (page 82): Gambles A and B give
the same outcome $0 if the ball is green, and if we change that same outcome i
green to $100, we get A’ and B, respectively.

So what?

Individuals deviate ffom the models of expected utility maximization that are
developed in this chapter in systematic fashion, making those models less than
ideal for descriptive purposes. Some apologists for the models argue that the
deviations that are observed are not of economic significance (but try telling that
to, for instance, the designers of mail-order catalogs, who employ framing eflects
in the their designs); others will argue that preferences expressed in a lab setting
are not taken seriously by the subjects, and when it comes to serious economic
decisions, conformity to the standard models is better.

But the evidence is strong and the eflects are confirmed experimentally time
affer time, so it seems witless to pretend that the evidence isn’t there. Two



tasks are obvious:

1. Better models—better in the sense that the behavior modeled is closer to
what we see empirically—should be developed. There are, in fact, large
(perhaps not quite vast) literatures that address in various ways Allais-type
and Ellsberg-type choice behavior. But, at least to my knowledge, none of
the variations offered by these literatures has been accepted broadly as the
right alternative. '°

2. In specific applied settings, the economic implications of systematic
deviations from the standard models should be explored. This has been the
subject of recent work in the realms of behavioral economics and behavioral
finance.

While awaiting further progress in these two directions, the models of
(subjective and objective) expected utility maximization remain the standard
(descriptive) models of choice under uncertainty. So we turn next chapter to a
few of the standard applications.

Theoretical issues with the models

But before doing so, we must observe that objections on theoretical grounds can
be made to the models of expected utility maximization, at least as applied by
economists in some contexts. The two objections we raise here both arise from
the same root cause, the application of the model to a “small world of choice”
that is properly part ofa broader choice context.

Imagine a consumer choosing whether to invest in, say, debt issued by a
major corporation that is not doing well. Debt (in the form of corporate bonds)
is meant, ideally, to be riskless, at least in terms of nominal (non-inflation-
adjusted) payof. But in today’s financial markets, that ideal is rarely met, and
anyone contemplating an investment in debt instruments would take into
account the odds of default, and so forth. Do we, therefore, model the decision
process (whether to invest in this debt and, ifso, how much debt to take on) by
describing the probability distribution (subjectively determined, say) for the
payof and then by comparing expected utility of the consumer with and
without the debt? Students of finance will see immediately that the world of
investments is more complex than this; one needs to think of the investor’s full



portfolio of financial investments. This debt is worth less to the investor, in
most cases, if it has positive correlation with other investments held by the
investor, and it is worth more if the correlation is negative.

The moral is simple: When evaluating an investment, we know (at least,
you know, once you’ve had an introductory course in finance) that one has to
look at the investor’s full portfolio; looking at a single investment in isolation
is nonsensical, if one is thinking of employing the models ofthis chapter.

But this obvious principle is not so well honored in the literature if one
expands the setting slightly. A comerstone of financial theory, the Capital Asset
Pricing Model (CAPM), divorces the investor’s decision how to invest from the
investor’s human and real capital. As an employee of Stanford University, with
a fair amount of my wealth tied up in a house that sits not too many miles ffom
the San Andreas Fault, my investments in financial assets issued by California
corporations and, especially, by firms in Silicon Valley should probably be
somewhat tempered, at least relative to the investments of a colleague of mine
from, say, Princeton University. A high-level executive in the Ford Motor
Company should, perhaps, hold less financial wealth in assets that have positive
correlation with the fortunes of the automobile industry than should a similarly
placed executive in the financial sector. Yet when you go to the textbooks and
papers that develop the CAPM, you won’t always find due care taken of such
considerations.

A second theoretical issue concerns so-called temporal resolution of
uncertainty. Imagine that I will flip a fair coin and, if it is heads, give you a
check for $100,000. If it is tails, you get nothing. As a graduate student (I’1l
assume), this is a nice thing, but to complicate it a bit, let me suppose that you
will get the check, if the coin comes up heads, exactly twelve months from
today. And, to add one further level of complication, consider the following
three variations on this theme:

A. Twill flip the coin today, and tell you the result of the flip today.
B. Iwill flip the coin in twelve months, so you only learn the outcome then.
C. T will flip the coin today, in the presence of some reliable witnesses. But I

will only tell you the outcome in twelve months’ time.

To give this a decision focus, suppose I ofer you your choice of the gamble as
described, or a sure-thing $20,000, also to be given to you in twelve months.



How you feel about the gamble versus the sure thing depends on a lot of
subjective circumstances. But, if you are like most folks, you strictly prefer
variation A to variations B and C, and you probably are indiferent between B
and c. Indeed, for some folks, the gamble under variation A is preferred to
$20,000 for sure, but $20,000 for sure is preferred to either variation where you
don’t learn the outcome for twelve months. This is so because the information
will guide decisions you make over the next twelve months, such as how much
to consume, whether to get your car repaired, whether to take a vacation in
Hawaii in the interim, and so forth.

If we used the expected utility model applied to your utility for consumption
streams (therefore employing some ofthe ideas we’ll discuss in Chapter 7, when
we get to dynamic choice), the diferences between B and C on the one hand and
A on the other would be obvious within the model. But if in trying to decide
whether you want to take the $20,000 for sure or the lottery without
incorporating into our analysis all those intervening consumption decisions,
we’d be unable to distinguish (within the model) between A on the one hand
and B and C on the other. All three are 50-50 gambles with prizes $100,000 or
$0, so in the (narrow scope) application of the models of this chapter, the three
are the “same.”

Moreover (and this is a good deal harder to see), even if we fix the resolution
of uncertainty at some fixed date—we compare various lotteries among which
you might choose, with the understanding that the uncertainty involved will
resolve only in, say, twelve months’ time, when payment is made—you might
not satisfy the “substitution axioms” that are key to this chapter.11

In both these circumstances, no theoretical problem arises in the application
ofthe models ofthis chapter if 'your model of the consumer’s decision process is
broad enough to encompass all the relevant factors. But in many applications of
the models of this chapter, the economist doing the model chooses to
economize on the scope of his or her model and, in so doing, raises good
theoretical objections to the use of the model altogether.

Bibliographic Notes

The subject of choice under uncertainty is well covered in detail in a number of
textbooks. I recommend Fishburm (1970) and Kreps (1988). For getting all the
details of the standard model, Fishburn is highly recommended. Kreps omits



some of the details of proofs, but is perhaps more immediately accessible than
Fishbumn. If you like to consult original sources, see von Neumann and
Morgenstern (1944), Herstein and Milnor (1953), Savage (1954), and Anscombe
and Aumann (1963).

On the topic of empirical objections to the models, the three classic
references are (chronologically) Allais (1953), Ellsberg (1961), and Kahnemann
and Tversky (1979). A good survey of alternatives that deal with the so-called
Allais Paradox is Machina (1987); Wakker (2008) provides a survey of
alternatives that deal with the Ellsberg Paradox.

Problems

m*5.1. (@) Suppose a consumer who satisfies assumptions a, b, and c of
Proposition 5.3 is choosing among the following gambles: (1) $10,000 with
probability 1. (2) $3600 with probability 1/3 and $14,400 with probability 2/3.
(3) $0 with probability 1/5, and $10,000 with probability 1/5, and $22,500
with probability 3/5. The consumer has utility function U(x) = 1",-"'_1_ How

does this consumer rank-order these three gambles?

(b) Suppose a consumer whose preferences are represented as in equation (5.1) is
choosing among the three acts or gambles shown in Figure 5.10. Her three

state-dependent utility functions are uy((x|, X,)) = 1".-";;_‘1 I3 up(le, X)) =
0.6 min {x, x,}, and ug((x;, x,)) = 0.4 (x;+x,). How does this consumer rank
order these three acts?

S'l

(1.4) (5.5)
2_(3,12) 55)
g

3

(7.7) (5,5)



Figure 5.10. Problem 1b and c: Three acts

(c) Suppose a consumer whose preferences are represented as in Equation (5.2) is
choosing among the three acts shown in Figure 5.10. Her subjective probability
assessment is p(s;) = 0.5, p(s,) = 0.3, and p(s3) = 0.2, and her utility fanction

is U((x), x,)) = (x1x2)0'25 . How does this consumer rank order these three acts?
(d) Suppose a consumer who satisfies the assumptions of Proposition 5.12 must

choose between the two acts (or, in this context, horse-race lotteries) in Figure
5.11. Her three state-dependent utility fanctions are ug (¥, X)) =, /47 23

Uy ((x), X)) = 0.6 min {x|, x,}, and u,((x], x,)) = 0.4 (x; + x,). Which horse-
race lottery would this consumer choose?

(1.0
L 65)

10 (55

1.0
19 5

Figure 5.11. Problem 1d and e: Two horse-race lotteries

(e) Suppose a consumer who satisfies the assumptions of Proposition 5.13 must
choose between the two horse-race lotteries in Figure 5.11. This consumer
assesses p(s;) = .5, p(s,) = .3, and p(s3) = .2, and her utility function is u((x,,

X)) = (x1x2)0‘25 . Which horse-race lottery would this consumer choose?



W 52. One will sometimes find mention of “state dependent subjective
expected utility,” meaning (in the context of preferences '~ on A4 =XS) a

representation of the form

u(a) = E pis)u, (a(s)),
T
where p is a probability distribution on S and, for each s, u, : X — R. Is this

representation stronger, weaker, or equivalent to the additive-across-states
representation given in Equation (5.1)?

m *5.3. The purpose of this problem is to explore the proof of Proposition 5.4
where we don’t add the extra assumption about the existence of best and worst
elements & and Z'. Prove the Mixture-Space Theorem without this
assumption. Of course, you are fiee to enlist Lemmas 5.5 through 5.9, none of
which use this extra assumption.

This is a hard problem, so let me give you some assistance: If every element of
Z is indiflerent to every other element of Z, then u equal to any constant will do.
So we can assume that there exist a pair = and ¥ in Z such that 7 — 2,
although it is no longer true that 7 '~ z '— Brall z € Z. Now calibrate
each z € Z on a scale where u(_) =1 and u u( ) = 0; to see what this means,
go back to page 95: f 7 = z = ¥, find the ur unique a such that a& + (1 — a)
¥ ~z, and set u(z) = a. Itz }- 7, ﬁnd the unique @ such that az + (1 —a)x ~
7, and set u(z) = 1/a. And if & =~z ... well, case 3 on page 95 tells you what
o do.

= 5

Now that we have u, we have to show that u represents — and is linear in

convex combinations. You can try a brute force approach to this (and it will
work), but be wamned that there are a lot of cases to consider Or you can be
more clever: Take any pair z and z’ fom Z. Let z; be the - -best out ofz, z’,

and 7. Let z, be the worst out ofz, z', and 7. Prove that Zl =z, and that z,



“m & ' z, fOr & any one ofz, z|, &, ¥, and any convex combination of any
=z = s

s

of those four. Let Z'= { & € Z :z| = & = z,}. IsZ' a mixture space?

&

(Yes, but you have to prove this.) If the three mixture-space axioms (a, b, and ¢
from Proposition 5.3) apply to Z, do they apply to Z"” (Yes, but you have to
say why.) Apply the argument in the proofin the text to Z’ (it satisfies the extra
assumption, of course), to produce a representing and linear-in-convex-
combinations v : Z' — R. Now rescale v so that the rescaled function, call it v/,
satisfies v’(f) =1 and v( )= 0. How does v' compare with « on Z"?

m 5-4. With regard to the “run the horses first” discussion beginning on page
119, suppose that we let A = X5 for some finite set S, we let 7 be the set of
simple probability distributions on 4, and we assume that “— on /7 satisfies the

(mixture-space) assumptions a, b, and ¢ of Proposition 5.3. That is, we run the
horses after conducting the roulette lottery. What result (in the spirit of the
results in this chapter) do we get?

m 5-5. To help you to understand what I call the trick in Anscombe-Aumann,
investigate the following alternative setting. Let X be an arbitrary finite set of
objects, and let Z be the set of all subsets of X. Assume a decision maker has
complete and transitive preferences '~ over elements of Z. Since Z is finite,

we’ve already made enough assumptions to ensure that — has a numerical

representation u : Z — R, but Id like more.

To get more, and in the general spirit of Anscombe and Aumann, we can
expand the domain for %~ . One possibility is to look at the space of probability

distributions on Z. Calﬁhis space P, and assume that “— is defined on all of P

and satisfies the three mixture-space axioms. (In this context, Z is a “subset” of
P in the sense that, within P, there are probability distributions that have a one-
element support.) What results? Does this help us to pin down the structure of
u?

A second possibility is to define the space Q: = [0, 17¥, where the interpretation
ofag € Q is that, ifthe decision maker chooses ¢, then g(x) is the probability
that the decision maker gets x in the subset of objects out of X that she receives.



(In this context, each element z € Z can be identified with that element ¢ € Q
that gives probability 1 to elements x € z and probability 0 to x € z.) The
space Q is a mixture space, where ag + (1 — a)q’ is defined by (ag + (1 — a)g")
() = ag(x) + (1 — a)q'(x). Suppose '~ is extented to all of Q and satisfies the
three mixture-space axioms. What results? Does this help us to pin down the
structure of u? (Hint: Yes, it does. You should be able to show that there exists
a function U : X — R such that u(z) = Z <, U(x).)

Why does the application of the Mixture-Space Theorem in the second possible
approach give such a stronger result than its application in the first possible
approach? How does this relate to the discussion of the trick in Anscombe-
Aumann that is given in the book?

m *5.6. The Anscombe and Aumann derivation of subjective expected utility
relies on the set of states of nature S being finite. How would we extend it to
infinite state spaces? This problem takes you (step by step) through one
extension that, essentially, adapts the original proof There is a lot of setup and
notation involved, so ifyou tackle this, please be patient.

First, we provide a setup. Begin with an arbitrary state space S and an arbitrary
prize space X. As in the text, let /7 be the space of simple probability
distributions on X. The setup also involves an algebra of subsets of S, denoted
A; an algebra of subsets is a set of subsets such that (1) S € J;i’ 2)if4 € ./j,
, then the complement of 4, denoted AC, is also € A, and (3) if4, B € A,
then4 N B € A (Ifyou’ve never worked with this concept before, you might

want to prove: If4 has properties (1) through (3), then 4 is also closed under
unions.)

For finite S, we defined H = HS, the space of all functions from S into /7. Now,
with an arbitrary set S, we “reduce” H somewhat: Ifh € H, then there exists a
finite partition 4y, ..., 4, of S, with each 4; € A, such that % is constant over
each 4;. That is, there is an equal-length list of objective-probability lotteries
Ty, ..., T, such that h(s) = z; ifs € A,



Because of this, we can describe any 7 € H as
h=[m ondy, .. xond, .., m,ond,]
as long as {4, ..., 4,} is a partition of S with each 4; € A

H, so defined, is a mixture space: Suppose % is as described in the display just
above, and

W' =[monAj....,monAl...,m onA ]
Fora € [0, 1], we define
oh+(1-ah'=[...,am+ (- a)mon A N4, .. Jia,...m50,..me

That is, ar +(1—a)z’ is defined on the partition that is the meet or coarsest
common refinement of the two partitions, which is formed by intersecting cells
of the two partitions, and that, on the cell 4 . [7] _.;1;, is the obvious mixture

i |
of7; and ”_‘J'

a. Since H is a mixture space, what does the Mixture-Space Theorem say
about a preference relation *— defined on H, which satisfies the three

mixture-space axioms?

For z € II, when I write, for instance, 7 — h for some preference relation '—

on A, I am identifying 7 with that element of H that is z for all S or, in other
symbols, [z on S]. And for x € X, if [ write x where the context wants an
element of 77, I will mean the objective-probability lottery that gives x with
certainty; if I write x where the context wants an element of 4, I mean [x with
probability 1 on S].

Fix some element of X, which we’ll denote by 7. In part a, you (presumably)



said that if the three mixture-space axioms hold for %, then '~ is represented

by some function F : H — R that has certain useful properties. (I don’t want to
give away the whole answer to part a!) You also (presumably) said that such
functions F' can be rescaled by adding or subtracting any constant and by
multiplying by a positive constant. (Right?) For the remainder of this problem,
I want you to assume that '~ on H satisfies the three mixture-space axioms,

and then fix such an F that is normalized so that F(q%)=0.

Let A4 be any subset of S (ffom J‘i)’ and let , be functions ffom A into /7 that
take on at most finitely many values, on sets from A That is, iy, € H, has
the form: there is a partition 4;, ..., 4,, of4 (all fom A) and 7, ..., 7, all
from 77, such that /4 (s) = ; fors € 4;. In this setting, define F, : H; — R by

Fy(hg):=F ([x, on 4y, ..., m, on 4, 7+ on A°])

Next, suppose that 4, ..., 4, is a finite partition ofS, and suppose that 4;,

n
Ap, ..., A, is a further finite partition of each 4; (all of this involving sets flom

the algebra A).

(I really ought to write m;, so that the further partition of 4; can have a different
number of cells than the farther partition of4,. But, at least formally, by
putting in copies of the empty set into these further partitions, my notation is

without loss of generality.) Let {”iﬁ i=1,..,nj=1, .. m} bealist o

elements of 77.

b.  Prove that

.F[[ Ty 0N -'LLi_;i“- ]) = Z .FA!.[[....T&_‘.; on “1i'_ii"":|)‘



where in the sum on the right-hand side, for each i, you are looking at the
element of H 4; that assigns m; to sub-cell A i

(Part b is the key step, and it comes right out of the proof of the basic
Anscombe-Aumann result, where the normalization F(:J*) = 0 makes everything
a snap.)

c.  Refer to Savages Sure-Thing Principle, Axiom 5.1 in the text. Prove that
(if = satisfies the three mixture-space axioms), then it satisfies Axiom 5.1
adapted to this context. (Part of this question is figuring out what I mean
by “adapted to this context.”)

d. ForA € A and x € X, define Uy (x):= F ([x on 4, 7+ on AC)). Prove

that the function

U(mon As,....Toon Ay)) = Z z U4, () mi(x)

i=1 .rESllpp{'rri]
provides a representation of — on H.

For the remainder of this problem, we assume that there exists some T € X
such that 77 %= 7. Given this 77, we fix the representing function F* with
which we’ve beenT;vorking so that, in addition to F(;1*) = 0, we have F(7F) =
i -

By virtue of part ¢ above, it makes sense, for any set 4 € J;i’ to speak of a
preference relation '~ ,, defined on /7, defined by

m=am if [ron A, anything atall on A°] =

[7' on A, the same anything on A°].



That is, in part ¢, you showed that what was assigned on A€ was irrelevant, as
long as it was the same anything. It should also be clear (if not, make it so) that
= 4, on [1 satisfies the three mixture-space axioms.

Assume henceforth that, not only is 77 = 77, but also 77 = , ¢ forall4 €
A. We do not preclude the possibility that T ~4 @ in which case we say
that 4 is null.

A finitely additive probability on (S, A) is a function p : -/'i — [0, 1] such
that p(S) = 1 and, if4 and B are disjoint subsets ffom A, then p(4 U B) =
p() + p(B).

e. Define

p(A) := F([Ton A, 2z on A€Y)).

Prove that p : J'i — R is a finitely additive probability on (S, J_i) and

that p(4) = 0 if and only if A is null. (What happens to this result if we
do not assume that 7 = 4 1t for all A?)

f. We add one final assumption: If A is null, then x ~, 7 for all x, and if A
is not null, then '— , (viewed as a preference relation on II) is the same as
“— (also viewed as a preference relation on Il). Prove that if this is true

(and all our earlier assumptions are true), then there exists a single utility
Sfunction U : X — R such that

U(mion Ay,....Thon Ag)) = Z p(di) Z Ulx) m;(x)
=1

.A;-.-:Sllpp::rrgjl

represents '~ on H.



This finishes the “more-or-less-staight-out-of Anscombe-Aumann” extension to
general state spaces S. We get subjective expected utility, where subjective
probability is finitely additive, and the utility representation is for /4 that are
“doubly simple™: 4 is piecewise constant on a finite partition of S and, on each
cell of the partition, z is simple (has finitely many prizes). We discussed in the
text (near the top of page 109) how one might move to expected utility for
nonsimple 7 (albeit without a state space) and the difficulties that are
encountered because St. Petersburg paradoxes can arise if U is unbounded. In the
same spirit, one can use continuity of preferences to extend p to a countably-
additive probability on (S, A) (assuming J‘i. is a sigma-algebra) and expected
utility to more complex 7 : S — II. If you have sufficient mathematical
sophistication to know about countable additivity, sigma-algebras, and the
definition of integrals through limits, you should be able to do this. I invite you
to do so, although the answer I give in the Student’s Guide stops with part £

7 1

! Savage (1954, p. 22) explains why he calls this the Sure-Thing Principle; I
cannot say that I find his explanation convincing. My preference would be to
call it independence, which is sometimes used or, even better, state-
separability, which does not seem to be used at all. Savage’s original name is
most commonly used, however, so I will stick with it.

2 To be fanatically precise, supp(az + (1 — a)p) = supp(x) ifa = 1, supp(x)
U supp(p) if0 < a < 1, and supp(p) ifa = 0.

3 Formal and abstract definitions of a mixture space concermn a space Z and, for
eacha € [0, 1], amap A, : 72 — Z such that h(z, 2") =z, hy(z, z) =z Prall a,
and so forth. T am being less formal than this and, in particular, writing az + (1
— a)z' for the abstract h,(z, z'), since in all the examples of mixture spaces we
consider, the informal notation is more intuitive and suggestive of what is going
on and is easier to work with. But beware: In formal treatments, it is not
assumed that /,(z, z') = h|_,(z', z) or, in informal notation, that az + (1 — a)z’'=
(1 — @)z’ + az. This property isn’t needed to prove the Mixture-Space Theorem,
although it holds in all practical examples of which I am aware and makes lifc a



bit simpler when it comes to proofs. So I assume it.

4Tam being vague about what “nice” means here, but I have in mind that X
=R, or X = Hi', or X is at least a “rectangle” in RE.

3 For instance, partition increasingly larger but bounded subsets of X into
finitely many small “rectangles.” If X = R, say, take rectangles of the form (i/n,
@i+ lyn] fori = *nz, e — 1,0, 1, 2,3, .., n2. Then, for any one of the
rectangles, call it Z, let p, place the measure p(Z) on any single point fiom
within Z, arbitrarily assigning the leffover probability to, say, the origin. This
“discretization” ofp gives a sequence of measures that converges to p in the
weak topology, as the diameter of the rectangles goes to zero.

6 The assumption of finite S would seem to limit the applicability of this
approach. This limitation is more apparent than real: The extension of these
results to general S is straightforward, albeit notationally cumbersome.
However, this extension only takes you as far as finitely additive subjective
probability, without a considerable upgrade in mathematical armament. Problem
5.6 gives details.

7 If 1 was being very careful, there would be a state of nature for ties, or for the
case where no winner is named, and so on.

8 For an attempt to convince students of management that they should use
expected utility, see Chapter 16 of Kreps (2004).

9 Because the odds are “approximately” known in the second case, you can
see that my “definitions” are woefully inadequate; it ought to be that flom
known to unknown—ffom risk to uncertainty—is a continuum, not a discrete
distinction. By employing DeFinneti’s Theorem, one can construct such a
continuum; for an introduction to the DeFinneti’s Theorem in roughly this
context, see Kreps (1988, Chapter 11), although this introduces DeFinetti’s
Theorem; it does not construct the continuum or discuss the distinction
between risk and uncertainty.

10" A reviewer of the book suggests that reference-dependent, loss-averse
preferences, as developed by Koszegi and Rabin (2006), has achieved the status
of being at least a right alternative. I'm unsure I would go quite that far, but
this model of preferences does have considerable power to explain a host of
empirical “anomalies.”



1 Why? Roughly, imagine that you are indifferent between lottery A and
lottery B under these circumstances, but facing lottery A, you take a different
immediate consumption decision than you do facing lottery B. Then you prefer
A and B to a convex combination of them, since in the convex combination,
you have to hedge your bets in terms of immediate consumption.



Chapter Six




Utility for Money

In many applications of the models of Chapter 5, the lottery prizes x € X are
assumed to be amounts of money. In this chapter, we explore a number of
developments specific to this context.

Throughout, the space of prizes X is an interval of the real line, and /7 is the
set of simple probability distributions on X. A consumer’s preferences over 7
are given by ‘—, which, we assume, satisfy the three mixture-space axioms (a,
b, and c of Proposition 5.3), so that they are represented by expected utility for a
utility function U : X — R. Prizes are referred to as money, as income, or as
wealth, depending on the context.

6.1. Properties of Utility Functions for Money

We first ask, If the prizes are monetary, what are reasonable (further) properties
for — and what are the consequences of those properties for U?

More money is better

It seems entirely reasonable to assume that our consumer prefers more money to
less. This has a straightforward consequence for the representation, which you
should have no difficulty proving.

Proposition 6.1.  The utility function U is strictly increasing if and only if,
for all x and y in X such that x >y, 0 ‘=~ Jy.l

Continuity

Continuity of the utility function U is useful for many purposes and is ensured
by a fairly intuitive property.

Proposition 6.2. The utility function U is continuous if and only if: For every
prize x and gamble m such that w ~. &, there exists £ > 0such that either ©

= Oy for all x" within € of x, or 6.’ = for all such x'

In words, unless §, ~m, we can make small changes in the *for-certain” prize



and not affect how the two compare. Very roughly, continuity of U is ensured i
preferences are continuous when we make small changes in the prizes.

Proof. Suppose U is continuous and 7 — J . Then u(r) = Zy Up)n(y) > Ux).
Let y = u(r) — U(x). By continuity of U, there is some ¢ such that for all x'
within £ ofx, Uk') — Ux) <y, which implies u(r) > Ux), orz = d'. A
similar argument works for the case J "~ .

Conversely, suppose that U is not continuous at a point x. Then there is
some sequence {x,} with limit x such that lim, U(x,) exists (allowing limits oo
or —o0) and either lim,, U(x,) > U(x) or lim, Ux,) < Ulx). Write L for lim,
Ulx,), and suppose L > U). IfL = oo, then 6, = d = &, for all large n
and some fixed N, and we get a violation of the property in the proposition. IfL
# oo, let L — U(x) =y, and let x be such that [L — Ulxy)| <y/2. Then the
gamble 7 with prizes x), and x, each with probability one-half has expected
utility no smaller than L/2+U(x)/2—y/4 = U(x)+y/4 and no larger than
L/2+U(x)/2+y/4 = L—y/4. Thus 7'~ ¢, but for all sufficiently large n, an h—

7, contradicting the property in the proposition. A similar argument works for
the case L < U(x). Therefore, ifU is not continuous, the property fails. The

contrapositive is, Ifthe property holds, U must be continuous. -

A fow remarks about continuity of U are in order for the mathematically
more sophisticated. We can talk about continuity in this setting in at least two
ways; namely, continuity in probabilities and continuity in prizes. Continuity
in probabilities means: If {m,} is sequence of simple lotteries, each having
support contained in some finite set X, and if lim, 7z, (x) exists and equals z(x)
for eachx € X', thenxz — p implies w, — p for all large-enough n, and
similarly for p *— 7. Note that in this form of continuity the probabilities of the
prizes are changing with n, but the supports of the probability distributions

(essentially) do not change.2 Continuity of preferences in probabilities is
guaranteed by the three assumptions of Proposition 5.3; note that the expected
utility function u(z) = ZxEsupp(n) U(x)r(x) is continuous in probabilities no



matter how well- or ill-behaved is U.

Continuity of preferences in the prizes asks for a lot more. Now a “small
change” in a lottery 7 can involve small shifis in the probabilities of the prizes,
as before, but also small shiffs in the prizes themselves. Of course, this means
that we have to know what it means for there to be a small change in prizes; the
prize space X must come with a notion of nearness, which is manifestly the case
when X is an interval of the real line. A lottery with prizes 4 and 6 having
probabilities 0.3 and 0.7 is “close” to a lottery with prizes 3.9 and 6.05 having
probabilities 0.29 and 0.71. T won’t try to give a formal definition of this sort of
continuity, but you should (at least) see that continuity is a much stronger
assumption ifsmall changes in both probabilities and prizes are to be allowed.>

Risk aversion
The next property is risk aversion. First we need a piece of notation. Forz €
I, let Ex represent the expected value of z, or Ex = Y xn(x).4

Proposition 6.3.  The utility function U is concave if and only if, for all
lotteries m, 0 g '— 7.

A consumer who prefers, for every =z, the expected value ofz for sure (that is,
0 ) instead ofz, and whose utility function is therefore concave, is said to be

risk averse. We could also define a risk-seeking consumer as one for whom 7 ‘=
0 g for all z; this sort of behavior goes with a convex utility function u. And a
consumer is risk neutral ifmw ~ 6, which goes with an affine utility function.

In economic theory, risk aversion, which includes risk neutrality as a special
case, is typically assumed.

Proof of Proposition 6.3. Suppose U is not a concave function. Then for some
x, x' € Randa € [0, 1], Ulax + (1 — a)x’) < aUx)+(1 — a)U(x"). Let = be the
lottery that has prizes x and x’ with probabilities ¢ and 1 — a; then Ex = ax + (1
— a)x’. The expected utility ofd , is Ulax + (1 — a)x) < aU(x) + (1 — a)UX)),
which is the expected utility of 7. Hence 7 — 6 .

Conversely, suppose that U is a concave function. It is a relatively simple



matter of induction to prove that ifx;, ..., x, is a list of real numbers, and a;,

..., a, is a list of numbers between 0 and 1 such that z::,_ i, = 1_.-

then [J{% "7, o) =% 0 ATy (Thi It is th
wUGTR, 62:) 250, U@y o i i
discrete form of Jensen’s inequality.) Applying this to any simple lottery = tells
us that, if U is concave,

U Z m(x)r | = Z m(x)(x).

zEsupp{T) xCsupplm)

The lefi-hand side is the utility of the lottery ¢ ., while the right-hand side is
the expected utility of z; hence J g, = 7.

- |

Figure 6.1 indicates what is going on. (Ignore the mention of certainty
equivalents for now.) A concave utility finction U is depicted, together with a
line segment joining the two points (x, U(x)) and (x), U(x"). Take any a € (0,
1), say a =.6, and consider the lottery 0.6 + 0.4 ; that is, an 0.6 chance at x
and a 0.4 chance at x". The expected value ofz is 0.6x + 0.4x"°> Does our
consumer prefer d 6,104 OF the lottery 0.6, + 0.49,,? Answer this by
comparing the two expected utilities. For d¢,.4,» We have expected utility
U(0.6x + 0.4x"), while the expected utility of 0.6, + 0.4, is 0.6U(x) +
0.4U(x"). By concavity, the former is at least as large as the latter, which is what
we want. Of course, the property of risk aversion is meant to hold for all

lotteries and not just those with supports of size two. But concavity of U is just
what is needed, in general.
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Figure 6.1. Concavity, risk aversion, and certainty equivalents. For a
lottery = that gives prize x with probability.6 and x' with probability.4,
we mark the expected value of the lottery as Ex and the certainty
equivalent of the lottery as C(n).

If U is a concave function on an interval of real numbers, it is automatically
continuous on the interior of the interval (see Proposition A3.17g), although
there can be a discontinuous drop in the value of the function at any endpoint
the interval might possess. Therefore, risk aversion virtually implies continuity
of U; we only need to worry about continuity at the endpoints of the interval, i
any.

Certainty equivalents and risk premia

Because the utility function U in Figure 6.1 is continuous, we know (fom the
Intermediate-Value Theorem of calculus) that for every @ € [0, 1] there is some
value x* with U(x*) =aU(x) + (1 — a)U(x). For any such x*, we know from the
expected utility representation that § .« ~z. Such anx" is called a certainty



equivalent of m. In general,

Definition 6.4. A certainty equivalent for a lottery m is any prize x such that
o, ~m.

Proposition 6.5. I U is continuous, then every lottery © has at least one
certainty equivalent. If U is strictly increasing, every m has at most one
certainty equivalent.

(The proofis leff as an exercise. Remember that we assume throughout that X is
aninterval inR.) We henceforth assume that the utility function under
consideration is strictly increasing, continuous, and concave, reflecting
increasing, continuous, and risk-averse preferences. Hence every 7 has a unique
certainty equivalent, which we denote C(x). Note that risk aversion, in this
setting, can be characterized by C(x) < Ex. We write R(z) for the diference Ex —
C(), calling R(x) the risk premium of r; therefore another characterization of risk
aversion is R(z) > 0 for all 7.

Absolute (and relative) risk aversion

In a rough sense, R(w) is a measure of the level of risk aversion of the consumer;
the larger is R(7), the greater is the extent to which the consumer “fears” the
riskiness ofz. (IfR(z) = 0 for all z, then the consumer is risk neutral.) In this
section, we use this concept to compare the levels of risk aversion of two
diferent expected-utility maximizers, and then we look into the question, What
happens to a single consumer’s level ofrisk aversion as she grows wealthier?

Begin with two consumers, both of whom are expected-utility maximizers
(for monetary prizes). The first consumer has utility function " and the second
¥V, where for simplicity assume these functions are defined on the same interval
of the real line. Assume as well that both /' and V' are strictly increasing,
continuous, and concave. To economize on language, we will loosely use
expressions such as “W is more risk averse than V” when we really mean,
“The individual with utility finction W is more risk averse than the individual
with utility finction V.” But what could we mean by that idea, however
expressed?



Definition 6.6. W is at least as risk averse as V' if, for any lottery = and sure-
thing dollar amount x, if W (weakly) prefers m to x, then so does V.

This may seem a natural definition, but at least one author, Ross (1981),
criticizes it as inadequate.

Proposition 6.7. W is at least as risk averse as V if and only if the function
Wiz v~V is concave.

Commentary and proof. First, to say a fow words about this proposition: The
symbol - means functional composition. ¥ is a strictly increasing finction and
continuous ffom some interval of the real line to some other interval of real
numbers (use continuity). Since it is strictly increasing and onto, it possesses a
continuous and strictly increasing inverse, which is denoted by Vl, whose
domain is the range of /' and whose range is the domain of ¥, which by
assumption is also the domain of W. Therefore, W V1 transforms (in a
strictly increasing manner) V into W; that is, W (x) = (W ¢ yh o V().

Suppose W i~ V1 is concave. Fix any lottery z and sure thing x such that
W prefers the lottery, which is to say

Wl <) m@) W),

where the sum is over the support of z. Rewrite this as
(WoVhHoV@h < Z (@) (W o Vo Vi),

and use the concavity of W 7! to conclude that



(WoV)oV (@)<Y sw)(WoV~)oV(w) < (WoV (Z rrw:)vm).
Since W s strictly monotone, this implies that

'Lf’[;r']} < Z'}T(I:IV[I:I.

which is to say that V prefers z to 2.
Conversely, suppose W i 7! is not concave. Then there exist ry and r, in

the domain of W y! (which is the range of V') and a scalar a between 0 and 1
such that

WoVYary+(L—ar) <aWoV )+ (1-a)W oV (ry.

Let x| and x, be the two elements of the domain of V' that map into 7 and r,,

respectively. Therefore, we can rewrite the previous inequality as
Wao I»"‘l(m‘l +(1-ar) <aWo 1»"‘1[1*’{1‘1)) t1-a)Wo I»"‘l(l»’(;rtg})
=aW(zy)+(1-a)W(z).

Now let x3 be the certainty equivalent of the lottery with prizes x; and x, and
probabilities ¢ and 1 — a, respectively. That is,

Wizs) = a W(xy)) + (1 — a) W(x,).

Combine this with the previous inequality, and you get

We 1:'—1(,;”-1 + (1 —a)rz) < Wixs).



Rewrite this as
WoV-YaV(z) +(1 — a)V(z2) < Wo V-V (@),
Since W ¢ V! is strictly monotone, this is

aV(r)) + (1 — a)V(x:) < V(xs).

Therefore, for this lottery and for the sure-thing x;, W is indiferent between

them, while V strictly favors the sure thing. If W ¥~ is not concave, W is

not at least as risk averse as V.
|

Now suppose that both 7 and V" are twice continuously diferentiable. We
have no justification for this, other than that it leads to some nice results. We’ll
use notation V' and V" to denote the first and second derivatives ofV,
respectively, and similarly for W. It is perhaps worth noting the mathematical
fact that, if V' is strictly increasing, continuously differentiable, and its derivative

is never zero, then v Lis also continuously differentiable, with derivative
av-1 1
T T =1 i
dy  V'(V='y)
Proposition 6.8. Suppose W and V are both strictly increasing, concave, and

twice continuously differentiable, and their derivatives are never zero. Then W
is at least as risk averse as V if and only if

W) , V'@
@ = Vi)’

for all x in their (common) domain.




Proof. This is a matter of calculus. We want to show that the condition given
(on the ratios of second derivatives to first derivatives) is equivalent to concavity
of W i V1. This involves showing that this fanction is twice continuously
diferentiable and evaluating its second derivative; given the formula for the

derivative of V™! (and the fact that it is continuously differentiable), you should
be able to do this, discovering that

EWoV) W@ [W'@ V'@
ar T VP | We) Ve

where x is shorthand for Vl(r), for 7 in the domain of W =1, which is the
range of V. On the right-hand side, the terms outside the square brackets are all
strictly positive, and so the second derivative of W' ¥~! is nonpositive

everywhere (hence, W V! is concave) if and only if the terms inside the
brackets are nonpositive, which is true if and only if the ratios of the second to

first derivatives are ordered as in the statement of the proposition.
|

Despite the seemingly formidable math (more seeming than actual), what is
going on here is straightforward conceptually. One utility finction is at least as
risk averse as another if it is “more concave” or more curved. Proposition 6.7
says that this holds as long as (and only as long as) the first utility function is
gotten from the second by a strictly increasing and concave transformation. And
Proposition 6.8 takes this to a “local” condition; the ratio of the second
derivative to the first is, for real-valued functions of one variable, a measure of
their curvature: it tells you how fast the second derivative is changing,
normalized by the first derivative. Since the second derivative of a concave
fanction is nonpositive, “more curved” at every point means putting a minus
sign in front of these ratios and comparing as in Proposition 6.8.

A second way to view this ratio as a local measure of risk aversion is as
follows:

Proposition 6.9. Fix a strictly increasing and concave utility function U that



is twice continuously differentiable at X0, with U’(xo) > 0. Consider the local
lottery that has prizes X° + £ and KO- €, each with probability one-half.

(Assume that x° — € and K0 +  are both in the domain of U.) The risk

. . . T Ov fTT8e 0
premium for this gamble is — [% Lr I{_‘;r:‘- Y L (;I‘E}] E‘z , up to a term
of order o( 2).6
This is proven using Taylor’s series expansions of the quantities involved; you
are asked to supply the proofin Problem 6.3. This result and our discussion of

the curvature of U justify the following definition.

Definition 6.10. For a twice-continuously differentiable utility function U with
strictly positive first derivative, the function

U (x)
TIF ()

is known as the (local) coefficient of risk aversion.”

A(z) =

Note that if U'> 0 and U is concave, A(x) > 0.

Consider a lottery 7 and a (dollar) amount z. Write 7 @ z for the lottery that
gives prizex +z with probability z(x). That is, z7 @ z is just the lottery
constructed ffom 7 by increasing each prize of 7 by the amount z. Thinking of
these prizes as the afier-the-gamble wealth level of our consumer, as we increase
zinz @ z, we increase the consumer’s general wealth level. It seems somewhat
natural to suppose that as someone becomes richer, she cares less and less about
risks that she takes in given gambles. In symbols, this would say that as z
increases, R(t @ z) should not increase; the consumer’s risk premium for a
fixed gamble should not increase as the consumer becomes wealthier® We
formalize this notion and two related to it as follows:

Definition 6.11. For a fixed consumer with utility function U, if R(x & z) is
nonincreasing in z, the consumer is said to be nonincreasingly risk averse.’ If



R(m @ z) is constant in z, we say that the consumer is constantly risk averse
or has constant risk aversion. If R(t ® z) is nondecreasing in z, then we say
the consumer is nondecreasingly risk averse.

Economists generally assert that it is natural to assume consumers are
nonincreasingly risk averse and that, over intervals of prizes that are not large
relative to the individual’s liftime incomes, the individual is approximately
constantly risk averse.

What does all this portend for the utility function U?

Proposition 6.12.  For a consumer with twice-continuously differentiable
utility function U such that U' > 0 and corresponding risk aversion coefficient
function A(*), the consumer is nonincreasingly risk averse if and only if A(*) is a
nonincreasing function. The consumer is nondecreasingly risk averse if and
only if A(*) is a nondecreasing function. And the consumer has constant risk
aversion if and only if A(*) is a constant function A, in which case the utility
function U is a positive affine translate of the utility function —e (If A is
the constant zero, then U is a positive affine translate of the function x; the
consumer is risk neutral.)

This result follows as a corollary to Proposition 6.8. Take the single utility
function U and two wealth levels z and z". Construct ffom these two different
utility fanctions: W (x):= U(x + z) and V (x): = Ulx + z'). How the U -utility
function evaluates # @ z is the same as how W evaluates 7, and how U
evaluates 7 @ z' is the same as how V' evaluates 7. Being careful with
definitions, you can show that U is nonincreasingly risk averse according to the
first definition ifand only if 7 is at least as risk averse as ¥ whenever we have z'
>z. But —U"(z)/U'(z) = —=W"(0) W'(0), and —U"(z")/U'(z") = =V"(0)/V(0), so A(x)
= —U"(x)/U'(x) being nonincreasing comes down to a comparison of the risk-
aversion coefficients of W and V for z' > z. Proposition 6.8 then gives all of 6.12
except for the part about constant risk aversion being equivalent to the utility
function U(x) =4 — Be™™ for constants A and B > 0, and that is a matter of
simple integration of —U"/U’ = a constant 1.

A variation played on this theme concerns how a single consumer responds
to proportional gambles with her wealth. Suppose that X = (0, o), and the
consumer’s von Neumann—-Morgenstern utility function U is concave, strictly



increasing, and twice continuously differentiable. We imagine that the consumer
has at her disposal an amount of wealth x, all of which she stakes in a gamble
that pays a random gross return. Such a random gross return is specified by a
simple probability distribution 7z with domain X, where our consumer’s wealth
affer the gamble is Ox (for & € supp(w)) with probability z(d). We can define a
certainty equivalent rate of return, CRR(r; x), which is that numberé such

that our consumer is indifferent between staking her wealth according to the
gross return distribution z or taking é}x for sure. And we can ask how CRR(z; x)

changes with changes in the consumer’s initial level of wealth x. It is generally
considered somewhat natural to suppose that CRR(x; x) is nonincreasing in x;
the richer our consumer is, the more conservative she becomes in staking all of
her wealth. If we define u(x) = —xU"(x)/U'(x), we can get results such as CRR(w;
x) is nonincreasing in x if and only ifu(x) is nonincreasing in x. The function u
is called the coefficient of relative risk aversion, as distinguished fom A =
—U"/U', the coeflicient of absolute risk aversion. For more on this, consult one
of'the references at the end of the chapter.

First- and second-order stochastic dominance

Because expected-utility maximizers in economic theory are nearly always
assumed to have increasing and concave utility functions, these properties are
used to create desirability-based partial orders on probability distributions
according to the following definitions. (We continue to assume that all
probability distributions are simple, although the theory about to be described
generalizes to nonsimple probabilities. )

Definition 6.13. Probability distribution = is first-order stochastically
dominant over p, denoted = > p, if. for every nondecreasing utility function U
: R — R, the expected utility of @ computed with U is at least as large as the
expected utility of p. That is, © >l p if every expected-utility maximizer who has
a nondecreasing utility function (weakly) prefers m to p. And probability
distribution w is second-order stochastically dominant over p, denoted > P,
if, for every nondecreasing and concave utility function U, the expected utility
of © computed with U is at least as large as the expected utility of p. Or, put
differently, = >* p if every expected utility maximizer who has nondecreasing



and (weakly) risk averse preferences over lotteries (weakly) prefers m to p.

These two partial orders can be characterized directly in two ways: in terms
of their cumulative distribution functions and in terms of jointly distributed
random variables with 7 and p as their marginal distributions. First, for any
simple probability distribution 7, let F;, : R — [0, 1] be the cumulative

distribution function ofz; that is, F,(r) = ZxESupp(”) .x<r T&), which is
(loosely) the probability under 7 of an outcome less or equal to r.
Proposition 6.14.

a 72! p if and only if, for all ¥ € R, F(r) < Fp(r)‘

b =« 22/) if and only if, for 0 a real number such that F”(ro) = Fﬂ(ro) =0

and for all >0,
:"1 ri
F_(rydr < F(rydr.
rd rd

(We’ll discuss the proof of this proposition afier we state the other
characterization of first- and second-order stochastic dominance.)

The second characterization is most easily expressed in the terminology of
random variables. Given two distributions 7 and p, we want to find a pair of
random variables X anpr defined on a single probability space, where the

marginal distribution of X is z, the marginal distribution opr is p, and whose
joint distribution has easy-to-interpret properties.

Proposition 6.15.
a. 72 p if and only if a pair of random variables X, and X, can be
constructed (on a single probability space) such that X has marginal
distribution m, X, has marginal distribution p, and X =X, + Y for a

random variable Y that is nonnegative with probability one. In words, X,



is X, plus a nonnegative supplement.

b w3 p if and only if a pair of random variables X and X, can be
constructed (on a single probability space) such that X, has marginal
distribution m, Xp has marginal distribution p, anpr =X, + Y, where Y

is a random variable that has conditional mean less than or equal to
zero, conditional on X In words, X, is X, plus a supplement which can

be negative or positive but that, conditional on X, must have nonpositive

mean.

For readers unfamiliar with the concepts of random variables defined on a single
probability space, the following restatement of Proposition 6.15 may help.
Think of a probability-tree depiction of z; for instance, ifz has a three-element
support, {0, 5, 10}, with probabilities 0.4, 0.2, and 0.4, respectively, we’d
depict 7 as in Figure 6.2a. Now, conditional on the outcome (one of 0, 5, or
10), we have a second round of uncertainty. As shown in Figure 6.2b, if the
outcome of  is 0, this second-round supplement is either —3 or +3, each with
probability 0.5; ifz gives 5, the second round supplement is —2 or +3 with
probabilities 0.75 and 0.25, respectively. And if 7 gives 10, the second round
supplement is —2 or +2, with probabilities 0.5 and 0.5. In Figure 6.2¢c, we
show the net of these two rounds, where we add the outcomes of the two
rounds: the resulting probability distribution has support {3, 3, 8, 12}, with
probabilities 0.2, 0.35, 0.25, and 0.2, respectively. This distribution, which
we’ll call p, is the distribution of a random variable X/, =X, + Y, where X has

distribution 7z (the first round), plus the supplementary ¥, whose mean
conditional on each value of X is less than or equal to zero. Hence, according to

Proposition 6.15, = second-order stochastically dominates p. Proposition 6.15
also tells us a distribution z second-order stochastically dominates p only if this
sort of construction relating an X, and an X, is possible, and 7 first-order
stochastically dominates p if and only if a construction of this nature is possible
with the supplementary Y being nonpositive with probability one. 10
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Figure 6.2. Second-order stochastic dominance. Does the three-outcome
distribution depicted in panel a second-order stochastically dominate the
four-outcome distribution depicted in panel ¢? It does. As shown in panel
b, one can create a two-stage probability tree where the first stage is panel
a and, for every outcome of the first stage, the second stage has
(conditional) mean less than or equal to zero (conditional on the results of
the first stage), where the sum of the two stages gives the distribution in
panel c. Proposition 6.15 says that one distribution second-order
stochastically dominates a second distribution if and only if we can
construct the second distribution from the first plus a conditional-
nonpositive-mean addition, in this fashion.

The proofs of Propositions 6.14 and 6.15 are left as exercises, as Problems
6.5 and 6.6. For the most part, these are not hard to prove, if you have the right
tools handy (and the problems will supply the tools), with one exception: it is
not easy to show that ifz second-order stochastically dominates p, then p is z
plus a conditional-nonpositive-mean noise term. (For this part, the problems
will direct you to an ingenious constructive proofin the literature.)



6.2. Induced Preferences for Income

In the analysis conducted in the previous section, we interpreted prizes as
amounts of money, using our intuition about likely properties for lotteries with
dollar-valued prizes. But consumers don’t eat money. Money is useful for the
commodities one can buy with it. So a fairly obvious question is, Ifa consumer
has von Neumann—-Morgenstern preferences for consumption bundles and if her
preferences for money arise entirely from the purchasing power of that money,
what conditions on her preferences for consumption bundles will translate into
the properties discussed in Section 6.1?

Su};pose there are k commodities; the consumption space X for the consumer
is . Assume that the consumer, considering simple lotteries over the

consumption bundles x that she might consume, conforms to the assumptions of
Proposition 5.3. Let U : X — R be her (resulting) von Neumann—Morgenstern
utility fanction for simple lotteries on X. Note that U is a perfectly good ordinal
representation for our consumer’s preferences on sure-thing consumption
bundles. That is, U could be used in all of the developments of Chapters 3 and
4; in particular, corresponding to U is an indirect utility finction wWp, y) that
gives the amount of utility (on the scale of U) our consumer derives flom
incomey at pricesp. But U is more than just any ordinal numerical
representation for preferences on X. We can use U (and positive affine
transformations of U) to compute expected utilities for simple lotteries on X, to
determine our consumer’s preferences over those simple lotteries.

We also assume for the time being that prices are fixed and given by some
price vector p € R-"f . (We will explore uncertain prices later.)

The question is, How does the consumer rank two lotteries concerning her
level of income? We let y denote a level of income, drawn fiom the set of
nonnegative numbers [0, o), so that a (simple) lottery 7 on income is a (finite
support) probability distribution over [0, ).

Assume that the consumer learns how much income she has to spend before
she purchases any part of her consumption bundle. Then if she has income y to
spend, she purchases some x € D(p, y) (her Marshallian demand), which gives
her utility U(x) = w(p, y). Accordingly, the expected utility she achieves fom 7z
is
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so that for two lotteries over her income, 7 and p, 7 *=— p ifand only if

Z vip, ym(y) = Z v(p, ) p(y).

yEsuppT) wEsUpp(pe)

That is to say, W(p, ), viewed as a function ofy for the fixed prices p, is a von
Neumann—Morgenstern utility function for our consumer when she examines her
preferences for lotteries over levels of income.

The assertions of the previous paragraph are more subtle than may be
apparent, so don’t go past them too quickly. For one thing, preferences over
lotteries of income are induced ffom the consumer’s primitive preferences over
consumption lotteries. A lottery over income, together with the assumption that
the consumer shops intelligently (maximizes her preference over consumption
once she knows her income and the prices), determines a corresponding lottery
over (well chosen) consumption bundles. And the consumer’s ranking between
two income lotteries is then inherited ffom or induced by her ranking between
the two corresponding consumption lotteries. This probably seems to you the
obvious way to analyze the problem, but it contains an assumption about how
the consumer thinks about income lotteries: She goes through the calculations
indicated. Or, at least and in the general spirit of positive economic modeling of
choice, when choosing among income lotteries, she acts as if she did all these
calculations. !

And there is an important timing issue here. Recall ffom Chapter 5 (page
115) the discussion about the timing of resolution of uncertainty. We have made
the “right” assumption here, namely that all uncertainty about y resolves before
the consumer must make any decisions about how she will spend y. This
ensures that her induced preferences over income lotteries have an expected
utility representation and so are themselves expected-utility preferences. Without
this assumption, her induced preferences may not take an expected-utility form.
(See Problem 6.7 for more on this point.)



Once we accept these modeling assumptions and assertions, questions about
properties of the consumer’s preferences over income lotteries and her
corresponding utility finction for income become questions about her indirect
utility function. The following proposition, which summarizes the state of
affairs, gives the basic results.

Proposition 6.16.  Suppose the consumer has preferences over lotteries of
consumption bundles that satisfy the assumptions of Proposition 5.3. Let U be
her utility function on consumption bundles and let Wp, y) be the
corresponding indirect utility function. Assume that U is continuous. Then the
consumer$ preferences over immediately-resolving lotteries pertaining to
income satisfy the three mixture-space axioms, and y — Wp, y) is her utility
function for income. Moreover:

a. Wp, y) is continuous in y.

b.  If the consumer is locally insatiable, then Wp, y) is strictly increasing in
P

c. If Uis a concave function, then Wp, y) is a concave function in y; that is,
our consumer is risk averse concerning lotteries over income.

Proof. To begin, note that the preamble asserts that the consumer’s preferences
on income lotteries satisfy the three mixture-space axioms. We know this
because her preferences over income lotteries have an expected utility
representation; Proposition 5.3 states that the three assumptions are necessary
and sufficient for expected utility.

Part a is (essentially) Proposition 3.3c.

For part b, suppose y > »', and let x' € D(p, y). (We are assuming that U is
continuous, so the existence ofx’ is guaranteed.) Then w(p, y) = U'). Of
course, p * x'<y’(in fact, p - x’= ', but we don’t need that), and hence p - x' <
y. Therefore, if income is y, the consumer (at prices p) can afford some bundle
strictly better than x’. The optimal bundle at prices p and income y can only be
better than this, so W(p, y) > Ux") = Wp, )').

For part c, take two income levels y and y' and a € (0, 1). Supposex €
D@, y)and x" € D(p, y). Thenp - (ax+ (1 —ax)=ap - x+ (1 —a)p - x' <ay
+ (1 — a)y’, which means that ax + (1 — a)x’ is fasible at prices p with income



ay+ (1 — a)y". Hence v(p, ay + (1 — a)y") > Ulax + (1 — a)x'), and

av(p.y) + (1 — aw(p,y) = all(z) + (1 — a)U(z")

< Ular + (1 — a)z") < v(p,ay + (1 —a)y").

where the first inequality ©ollows ffom the concavity of U. -

Part ¢ of the proposition requires that U, the consumer’s utility function
over consumption bundles, is concave. In Chapter 2, we said there is no
particular reason to suppose that this is so, but in the current context it can be
justified. Now we can ask our consumer: For any two bundles x and x', would
you rather have the bundle 0.5x + 0.5x" (where we are taking the convex
combination of the bundles) or a lottery where you get x with probability 1/2
and x' with probability 1/2? If our consumer always (weakly) prefers the sure
thing, and if she conforms to the assumptions of expected-utility theory, then
her von Neumann-Morgenstern utility function, which is a perfectly good
representation of her (ordinal) preferences on X, will be concave. '?

In the derivation above, we assume that prices are certain, given by a fixed
p. What if there is uncertainty about prices? Specifically, imagine that our
consumer enters into a lottery that determines her income y, and at the same
time prices are determined by a lottery p. All uncertainty resolves, and then our
consumer chooses what to consume.

If we want to speak of the consumer’s preferences over lotteries (only) in her
income in this setting, we must make some assumption about the statistical
relationship between lotteries on y and on p. A simple example will illustrate
the point. Consider a consumer who is evaluating an income lottery that gives
her $10, 000 with probability 1/2 and $20, 000 with probability 1/2. Suppose
that prices will be either p or 2p, each with probability 1/2. If our consumer’s
income level is perfectly positively correlated with the price level, she faices no
real uncertainty; her real purchasing power is unchanged. If on the other hand,
her income level is perfectly negatively correlated with the price level, she faces
rather a lot of uncertainty in her purchasing power It will be a rare consumer
indeed who is indifferent between these two situations, even though in terms of



the lotteries on (nominal) income, the two situations are identical. Either we
must consider how the consumer feels about lotteries jointly on prices and
income, or we have to make some assumption that prevents this sort of
problem.

The simplest assumption we can make is that these lotteries are statistically
independent. Then if we let p be the probability distribution on prices, the
induced expected utility our consumer obtains from the probability distribution
7 on yis given by
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Therefore, the consumer’s von Neumann—Morgenstern utility function for
income, which we will now write ¥(y), is
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You can quickly check that, in this setting, Proposition 6.16 holds without any
change except for this redefinition of the utility fanction on income.

A difterent question is, How does the consumer respond to uncertainty in the
price level? Suppose we fix the consumer’s income at y, and ask about her
preferences over probability distributions over the prices p that she faces. By the
same logic as before, W(p, y), now viewed as a function ofp for the fixed y, is her
von Neumann—Morgenstern utility finction for price vectors. We know that w(p,
y) will be continuous in p (if the underlying utility function is), and it can be
shown that W(p, y) is nonincreasing in p (but not strictly decreasing). But
convexity/concavity properties are generally ambiguous. Specifically, suppose
we ask whether a consumer (with concave von Neumann—Morgenstern utility
function U for lotteries on consumption bundles) would prefer to face a lottery
where prices are either p or p’, each with probability 1/2, or to face the prices (p
+ p')/2. The answer will depend (in general) on the specific p and p’; sometimes
the former is preferred (the consumer prefers to gamble over the prices she will



face), and sometimes the latter is preferred. For more on this, see Problem 6.8.

6.3. Demand for Insurance and Risky Assets

The most prevalent and extensive applications of the models of the last chapter
and this are to insurance and financial markets. Entire books and courses are
devoted to these markets, and to deal with them in reasonably sophisticated
fashion, one needs to take into account information and strategic action, ideas
that are developed only in Volume II. But the simplest and most preliminary
results are accessible at this point; in this section, these results are provided in
the context of insurance; corresponding results concerning financial markets and
risky assets are developed in problems at the end of the chapter.

Imagine a consumer whose income level is subject to some uncertainty.
Specifically, her income will be y with probability 7 and )’ with probability 1 —
7, where y >y". Think of the difference 4 =y — ' as some loss the consumer
might sustain, because of an accident, ill health, theff, or some other misfortune.
An insurance company will insure against this loss; if the consumer pays a
premium ofd, the insurance company will pay 4 back to the consumer if she
sustains this loss. The consumer may buy partial coverage; if she pays ad, she
gets back a4 if she sustains the loss. We do not restrict a to [0, 1]. (There are
good reasons why such a restriction or one even more severe might be in place,
but they concern concepts and ideas for which we are not yet ready.)

Assume this consumer satisfies the three mixture-space axioms concerning
her final level of income, net of any payments to/ffom the insurance company,
and her utility fanction ¥ is strictly increasing, concave, and diferentiable. If the
consumer buys a-fractional insurance, her expected utility is

()= Viy—ad)+(1-mV(y +ad - ad), (0.1)
and her problem is to maximize Wa) over a.

Proposition 6.17.  Consider the problem of maximizing Wa) defined by (6.1)
fory >y, 4=y—y, and V a concave, strictly increasing, and differentiable

function.

a. Ifo = (1 —n)d, then a=1is a solution of the problem.



b. Ifo > (1 — m)4, then a <1 for any solution of the problem.
Proof. IfV is concave, then an application of the second half of Proposition
A3.17b tells us that v is a concave function ofa. If is easy to show that v is a

differentiable function of @ as well, so we know that the first-order condition for a
maximum, v/(a) = 0, which is

moV'(y —ad) = (1 -m)(A - OV'(if + ad - ad), (6.2)

is both necessary and sufficient for a to be a solution to the maximization
problem.

@Ifo=(1-md,then (1 -4 -0)=(1-md4—-(1-n)0 =6 — (1 —xn)
= 7d, and (6.2) can be rewritten

Viy — ad) = Vg — (1 — a)A — ad),
which obviously holds at a = 1.

(b) Let b = wd/(1 — n)4 — 0)). Theno > (1 — n)4 implies b > 1. Rewrite
(6.2) as

bV (y —ad) =V'y— (1 —a)d — ad).
Because b > 1, this implies that
Viig—ad) <V'iy — (1 —a)A — ad)

ifa is a solution. Since V' is concave, its derivative is nonincreasing, and so this
inequality implies

y—ad >y—(1—a)d — ad,

which can only hold at a < 1.



Note that (1 — m)4 is the expected payout of the insurance company.
Accordingly, if 6 = (1 — @)4, the insurance company pays out on average just
what it takes in as premium, and the contract it offers is said to be actuarially
fair. Therefore, part a can be paraphrased: If the contract is actuarially fair, the
consumer wishes to purchase full insurance. '3

If6 > (1 — m)4, the company takes in more than it expects to pay out on
average; the contract is actuarially unfair. Part b is paraphrased: The consumer
only partially insures if ofered actuarially unfir insurance.'*

Problem 6.9 continues this analysis, and Problems 6.10 through 6.12
develop similar results for the case of demand for risky (financial) assets.

Bibliographic Notes

The material on utility functions for money (and especially absolute and relative
risk aversion) is further developed (in varying degrees) in Fishburn (1970) and
Kreps (1988). The classic references are Arrow (1974) and Pratt (1964). The
classic references on stochastic dominance are Hadar and Russell (1969) and
Rothschild and Stiglitz (1970); in the problems to follow, I adopt the ingenious
construction of Machina and Pratt (1997) for the one difficult step.

The economics of uncertainty (demand for insurance and risky assets) is
developed in many difierent places. Borch (1968) provides a readable
introduction; it is out of print, but libraries may have copies. Arrow (1974)
contains a number of classic developments.

Problems

m *6.1. (a) Prove Proposition 6.1.

(b) Provide the induction argument called for in the proof of Proposition 6.3.
(c) Prove Proposition 6.5.

W 6.2. An expected-utility-maximizing decision maker professes to have
constant absolute risk aversion over the range of (dollar) prizes ffom $—1000 to
$5000. Faced with a gamble with prizes $5000 and $0, each with probability
1/2, the decision maker says her certainty equivalent is $2400. Which of the
following three is most preferred by this decision maker: (a) $2000 for sure; (b)



$5000 with probability 0.6 and $—1000 with probability 0.4; or (c) $5000 with
probability 0.4, $0 with probability 0.3, and $1000 with probability 0.3.

| *6.3. Provide the proof of Proposition 6.9. (You need to know Taylor’s
Theorem, concerning Taylor’s series expansions, to do this.)

m 6.4. A commonly employed family of von Neumann-Morgenstern utility
functions (for strictly positive dollar prizes) is U(x) = x*a fora < 1 and a # 0.
What are the corresponding coeflicients of absolute and relative risk aversion for
these utility finctions?

Problems 6.5 and 6.6 concern first- and second-order stochastic dominance and,
in particular, the proofs of Propositions 6.14 and 6.15 (in the context of simple
probability distributions). Problem 6.5, conceming first-order stochastic
dominance, is not too difficult if you understand the trick that is described in
part b of the problem. Problem 6.6 is a good deal more difficult, especially part
c. If you get stuck on part ¢, go to the Student’s Guide, where 1 provide further
hints before giving the full solution.

| *6.5. (a) Suppose that 7 >l p, as defined in Definition 6.13. Show that F(r)
< F,(r) (where F(r) is the cumulative distribution function for 7, as defined on
page 132) for all r.

(b) Suppose that U is a uniformly distributed random variable on the interval [0,
1]. That is, U is a random variable where the probability that U <r for » € [0,

1] is r. Suppose that 7 is a simple probability distribution on R, and let the
support of 7 be {x;, X,, ..., x,} where x; <x, < ... <x,. Define a new random

variable X fom U by the rule X = x; if U € (F(x;_), F,(x;)], where for the case
U < F(x)) we let X = x|. Essentially, we are defining §" — JF —1 ([_}

¥ o :
Show that X has the marginal distribution function z; that is, the probability
that X = x; is a(x).">

(c) Use part b to show that if ¥ and G are two (simple) cumulative distribution
fanctions such that F (r) < G(r) for all r, then we can construct joint random



variables X and X; where X has cumulative distribution £ X ; has
cumulative distribution G, and Xj. — X; > 0 with probability 1.

(d) Suppose that 7 and p are two (simple) probability distributions such that
there exist joint random variables X and Xp where X, has distribution 7, Xp has

distribution p, and X — X,20 with probability 1. Then 7 >! p.

| *6.6. (a) Suppose that > p, as defined in Definition 6.13. Let O be any real
number such that all values in the supports of 7 and p strictly exceed 0. Show
that for all ! > /9,

g | 1
E_(rydr < F,(r)dr.

| 0

(Hint: Consider the utility fanction U0 ,1 (x) = min{x — O, - rO}.)

(b) Suppose that 7 and p are two (simple) probability distributions such that

there exist joint random variables X and X, where X has distribution 7, X, has

distribution p, and the conditional expectation opr — X, conditional on each

value of X, is nonpositive. Show that > p.

(c) Suppose that p and z are two simple probability distributions on R such
that, for some ° strictly less than every value in the supports of p and 7 and for
every rl > ro,

P

F,(r)dr.

'r'.‘
F_(rydr <
0 D

Show that there exist joint random variables X and X, where X has
distribution 7, Xﬂ has distribution p, and the conditional expectation opr -



X, conditional on each value of X, is nonpositive.

m 6.7. Consider a consumer who divides her consumption between two goods
and whose utility function is U((x;, x,)) = In(x; + 1) + In(x, + 1). Moreover,
she is an expected utility maximizer when it comes to (simple) lotteries over her
consumption bundle, and U is her von Neumann—Morgenstern utility function.
The prices ofthe two goods are both 1. Her income, used to finance purchases of
the goods, is given by the variable y, and it may be random.

What sets this problem apart fom what we did in the chapter is that our
consumer must choose x; before any uncertainty about y, if there is uncertainty,

resolves. Suppose, therefore, that she faces a lottery in which y = 98 or y = 178,
each with probability 1/2. What is her optimal choice for ¢;? What is her

expected utility? (You should be able to find the optimal level ofx;

analytically, but as you’ll need numerical methods later in this problem, you
might want to set this up numerically ffom the start. Compute her expected
utility to at least four places past the decimal point.)

Next, suppose thaty is certain; specifically, y = 126.948391819 with
probability 1. What is her optimal choice ofx;, and what is her (expected)

utility?

Finally, suppose that y takes on one of three values, 98, 178, or
126.948391819, each with probability 1/3. What is her optimal choice ofx;,

and what is her expected utility? (Unless you can solve cubics analytically, you
will need to do this numerically. You have to do it accurately enough so that
you find expected utility to four places past the decimal point.)

In the first paragraph, it says “she is an expected utility maximizer...” But the
answers you got should convince you otherwise. (Why do they convince you
otherwise?) What is going on here?

*6.8. Fix a consumer with von Neumann—Morgenstern preferences over lotteries
for consumption bundles, and fix this consumer’s income at some level y.
Given two strictly positive price vectors p and p’, would the consumer rather be
in an economy where prices are either p or p’, each probability 1/2, or in an



economy where the prices are sure to be 0.5p + 0.5p"? We asserted that there is
no clear answer to that question. In this problem, you are asked to develop two
examples that indicate what can happen along these lines.

(a) Imagine that there are two goods, and the consumer’s ordinal preferences are
given by u(x;, x,) =x; +x,. That is, the consumer’s von Neumann-
Morgenstern utility finction is U(x;, x,) = flx; + x,) for some strictly increasing
function f on the real line. Suppose that p = (1, 3) and p’ = (3, 1). Show that

regardless of what the function f is, this consumer prefers to take her chances
with the risky prices.

(b) Imagine that there are two goods and the consumer’s von Neumann—
Morgenstern utility function is U(x;, x,) = fimin{x;, x,}) for some concave,
strictly increasing function /" on the real line. Assume that f{0) is finite. Now
suppose that the risk in prices is entirely risk in the overall price level: p = (y,
y) and p' = (1/y, 1/y) for some scalar y > 1. Prove that for fixed y you can always
find a function f such that the consumer prefers the certain prices 0.5p + 0.5p’ to
the risky prices. And prove that for every concave, strictly increasing function f
with f{0) finite there is a y sufficiently large so the consumer prefers the risky
prices to the certain prices.

m 6.9. Suppose that an insurance policy compensates a victim for loss, but does
so somewhat imperfectly. That is, imagine that in the story given about the
insurance-buying consumer our consumer’s income prior to any insurance is y —
4, where 4 is a simple random variable (a random variable with finite support)
whose support includes 0 and some strictly positive amounts. The available
insurance policy pays a flat amount B in the event of any loss, that is, in the
event that 4 exceeds zero. The premium is still 0. Let 1 — z be the probability
that the consumer sustains a loss. The contract is actuarially fair ifo = (1 — 7)B.
Suppose this is so and that B is the expected amount of the loss, if there is a
loss. If the consumer has a strictly concave and differentiable utility function,
will she buy full insurance? Possible answers are yes, no, and it depends. (Use a
simple parameterized example if you can’t do this in general.)

Problem 6.10 through 6.12 concern the demand for risky assets. The setting
for all these problems is provided in Problem 6.10, which goes on to ask you



to provide results that parallel the results we gave in the chapter for
insurance. The remaining problems take you further into this topic.

| *6.10. Imagine a consumer who will do all her consuming one year hence.
This consumer has w dollars to invest and no sources of income except for the
proceeds flom her investments with which to finance her (eventual)
consumption. Let y denote the proceeds from her investments and assume that
her preferences over lotteries with prizes y satisfy the von Neumann—Morgenstern
assumptions, with y — 7 () her von Neumann—Morgenstern utility function,
which is strictly increasing, concave, and differentiable.

This consumer can invest her money in one of two assets. The first of these is a
riskless asset; for every dollar invested, the consumer gets back » > 1 dollars
next year. The second asset is risky. Its gross return, denoted by 6, has a simple
probability distribution 7z, so that z(0) represents the probability that the risky
asset has a gross return of §. By gross return we mean a dollar invested in the
risky asset returns 6 dollars next year.

The consumer’s problem, then, is to decide how much money to invest in each
ofthe two assets. Since every dollar invested in the second asset is precisely one
dollar less invested in the first, we can write her decision problem as a problem
in one variable a, the amount of money she invests in the second, risky asset. If
6 is the gross return on the risky asset, investing « in this asset means she will
have

y=fa+riw—a)=af —r)+rw

dollars to spend on consumption next period. So her problem is to

max(a) for ()= z Via(@ - r)+ru)m(6), (6.3)
- ficsupp(r)

subject to constraints we may choose to put ona. In particular, we will
constrain ¢ to be nonnegative, ora > 0. In the venacular of finance, this
constraint says that the consumer cannot short-sell the risky asset, but she can



leverage her investments in the risky asset by borrowing at the riskless rate. (If
we let a be negative, we would be permitting short sales. If we constrained a <
1, we would be prohibiting leverage through borrowing.)

The following proposition parallels Proposition 6.17 in this context:

Proposition 6.18.  Consider the problem (6.3) with the constraint a > 0.
Assume V' is concave, differentiable, and strictly increasing.

a.

b.

If EO < r, then the solution, and the only solution, is a = 0.
IfEO = r, then a = 0 is a solution, although there may be others.

If EO > 1, then every solution a, if there is a solution, must be strictly
positive.

If the consumer is risk neutral—that is, V(x) = Ax + B for constants A >
0 and B—then there is no solution if EO > 1, every a > 0 is a solution if
EO =r, and a = 0 is the only solution if EQ <.

Suppose 0 >r for all € supp(n), with 8 > r for at least one 6 (such
that ©(0) > 0). Then there is no solution to the problem.

If the consumer is strictly risk averse—that is, V'(x) is strictly decreasing
in x—and if supp(n) contains at least two elements, then the solution, if
there is one, is unique. Hence under these conditions, if EQ =1, then a =
0 is the unique solution.

Prove the proposition.

m 6.11. Now specialize Problem 6.10 as follows. Assume that the expected
return on the risky asset is strictly greater than r, the riskless rate, and the
support of 7 contains at least one value that is strictly less than 7. And assume
that the consumer has constant (absolute) risk aversion; that is, her utility
function V'is V (x) = - for some strictly positive constant 4.

(a) Prove that the solution to the consumer’s investment problem is finite and
unique; denote this solution by a(w, 1).



(b) Prove that a(w, 1) is independent of w; no matter what her initial wealth, the
consumer invests the same amount in the risky asset.

(c) Prove that a(w, 1) is nonincreasing in 1; the more risk averse the individual,
the less she invests in the risky asset.

W *6.12. When more than one asset is risky and there is a riskless asset
returning r, it is possible that a risky asset could have an expected return less
than r and still be demanded and that an asset could have an expected return
greater than 7 and not be demanded at all. (Recall that we are not allowing short
sales of risky assets. To make matters a bit more easy, assume that short-selling
the riskless asset is also forbidden.) Produce examples to support these claims.
(Hints: For the first example, you want negative correlation between the returns
on the two risky assets. For the second example, think of a case where each
asset returns either t'_] > ror f <r, but with difering probabilities; you have to

careful about the correlation between them, as well.)

When it comes to applications of the models of this chapter and last, a lot of
attention is directed toward the effects of risk sharing, risk spreading, and
diversification. The final two problems provide you with some basic themes
from this literature on which to chew.

m 6.13. (a) Consider an expected-utility maximizer whose utility finction U is
strictly increasing and concave. Imagine that this consumer has initial wealth w
and is considering whether to buy a small share in a gamble whose payoffs are
given by a simple probability distribution z. To be very precise, the consumer
is choosing between staying with her wealth w, or supplementing this with an «
share of the gamble, for & > 0 but very small. Letting £ be the expected value or
mean ofz—that is, E = ersupp(n) xr(x)—shares in this gamble are priced at
BE for a 100% share, for some f < 1. So if the consumer purchases an a share,
her wealth (whose expected utility she seeks to maximize) will be w + a(x —
BE) with probability z(x), for each x in the support of z.

Assume that £ > 0 and that the consumer’s utility function U is continuously
diferentiable. (Since it is concave and strictly increasing as well, the derivative
is everywhere strictly positive.) Show that for any fixed f < 1, the consumer



prefers to buy an o share of the lottery on these terms, rather than stick with w,
for a sufficiently close to zero.

(In words, if the lottery sells for less than its expected value, there is a small-
enough share of the lottery that this consumer wishes to buy, even though she is
risk averse. For small shares in a gamble, this consumer is “approximately risk
neutral.”)

(b) What happens to this result if the consumer’s utility function is not
diferentiable at w? What happens if the consumer’s initial position (to which a
share a of the lottery might be added) is random, given by some lottery p on her
wealth level w?

| *6.14. The fllowing bit ofnonsense is offen heard:

Suppose I offered you, absolutely for free, a gamble where with
probability.4 you win $1000 and with probability.6 you lose $500. You

might well choose not to take this gamble (if the alternative is zero) if
you are risk averse; although this gamble has a positive expected value
(0.4)($1000) + (0.6)($ — 500) = $100, it also has substantial risk. But if
I offered you, say, 100 independent trials of this gamble, then you would
certainly wish to take them; the law of large numbers says that you will
wind up ahead. That is, risk aversion is perhaps sensible when a single
gamble is being contemplated. But it is senseless when we are looking
at many independent copies of the same gamble; then the only sensible
thing is to go with the long-run averages.

Is this nonsense? Can you produce a particular ““consumer” who is rational
according to the von Neumann—Morgenstern axioms, and who would turn down
all independent copies of this gamble, no matter how many were ofered? Or
would any von Neumann—Morgenstern expected-utility maximizer take these
gambles if offered enough independent copies? (Hints: Either answer can be
correct, depending on how you interpret the phrase “enough copies of the
gamble.” The problem is easiest if we read this phrase as: We offer the consumer
a number of copies, fixed in advance, but very large. Then you should be able to
produce a consumer who will not take any of the gambles. If you are worried
about bankruptcy of this consumer, you may take your pick: [1] This consumer



is never bankrupt—her utility function is defined for all monetary levels,
however positive or negative; [2] this consumer is bankrupt ifher wealth, which
begins at a level of $2, 000, ever reaches $0; and we will stop gambling with
this consumer the moment she becomes bankrupt. Interpretation [1] is the easier
to work with, but either is okay.)

And, if you like challenges, try to prove the following: Suppose that we play
according to rule (2): The consumer is ofered “up to N gambles” with the
proviso that we stop gambling if ever the consumer’s wealth falls to $0.
Assume that the consumer has a utility fanction for final wealth that is strictly
increasing and that is finite at zero. (a) If the consumer’s utility function is
unbounded above, then there is an N sufficiently large so that, offered N gambles
or more, the consumer will take them. (b) While if the consumer’s utility
function is bounded above, the result can go either way: The consumer might
turn down the gambles, for all sufficiently large NV; or the consumer might accept
the gambles, for all sufficiently large N. If you can further characterize the two
cases in (b), that would be better still. (To be able to answer this question in
full, you will need to know a lot of the theory of stochastic processes: some
basic theory of random walks; then the theory of martingales and, in particular,
the Martingale Convergence Theorem.)

T 1

! Recall that forx € X, 0, denotes the lottery that gives prizex with
probability 1.

2 We say essentially because this does allow for some change in the supports.
Specifically, ifx € supp(z), then x must be in the support of z, for all large n.

But there can be x € supp(z,) and even in the supports of the z, for infinitely

many »n that are not in the support ofz, as long as (1) there are only finitely
many such x and (2) lim,, 7,(x) = 0 for every such n. Indeed, we can allow there

to be infinitely many such x, if we know that there is a uniform bound on their
utilities. See footnote 3 for more on this.

3 1 have in mind, roughly, continuity in the topology of weak convergence.



But this is only roughly correct, because I am not assuming that U is bounded.
For readers who know about the weak topology: Suppose U is unbounded, say,
above. Let x, be such that U(x,) > n, and let 7" be the (two-outcome) lottery
that gives (arbitrary) prize x, with probability (n — 1)/n and prize x, with
probability 1/n. The expected utility of 7" is at least (n — 1)U(xy)/n + 1. Find
some N such that U(xy) > Ulxy) + 1, and construct a two-outcome lottery with
prizes X, and xy whose expected utility is U(x,) + 1/2; since you can
continuously vary the probabilities, this is easily done. Then for all sufficiently
large n, o' " 7' — 6, and yet 7" — J  in the weak topology. Oops.

IfU is bounded and continuous, then preferences are continuous in the weak
topology. If U is continuous but not bounded, I only get continuity of

preferences for sequences of (always simple) lotteries that (1) have uniformly
bounded supports and (2) converge in the weak topology.

4 We later will write £ for the expected value of a random variable 6. No
confusion should result.

5 Careful! The lottery 0.66, +0.45 . denotes a probability distribution with
two possible outcomes, x and x,, whereas 0.6x +0.4x is a number And,
appearing momentarily, d ¢ 104, 1S @ probability distribution with one
possible outcome, namely 0.6x +0.4x .

© This means that if you write d(£) for the diference between the actual risk
premium of this gamble and — [?[,’” |:.-|_~-:|;.".|_',’-‘E_1~DHE£ , then limg _, d(E
yE2 =0,

71t is sometimes known as the Arrow-Pratt coefficient or measure of risk
aversion, affer the two individuals who independently developed the concept.

And, for reasons to be discussed, it is often referred to as the coefficient of
absolute risk aversion.

8 Fixing a lottery 7, as we shift the consumer’s wealth level z and construct
® z, we have to be careful that the prizes remain in the domain of the
consumer’s utility function U.

K Sloppy terminology is sometimes used: this property is called decreasing
risk aversion, and we say that the function U has or exhibits



nonincreasing/decreasing risk aversion.

10 1n Figure 6.2, the marginal distribution of the supplement Y is that it
gives prize =3 with probability 0.2, —2 with probability 0.35, 2 with
probability 0.2, and 3 with probability 0.25. But, for second-order stochastic
dominance, it is the various conditional distributions of ¥ and not its marginal
distribution that are important; specifically, the conditional distributions must
all have nonpositive means. For first-order stochastic dominance, the marginal
distribution of Y is sufficient; Y is nonpositive with (marginal) probability one i
and only ifit is conditionally nonpositive with probability one (conditional on
every x in the support of 7).

Il This is the first manifestation of dynamic choice in this book, to which
next chapter will be devoted: Before deciding that this way of modeling her
preferences over income lotteries is obvious, please see what next chapter has to
say.

12 To deduce concavity, it isn’t quite sufficient to check risk aversion only for
gambles with two equally likely prizes; but if U is continuous, this is enough.

13 Note that part a only says that =1 is a solution. There may be others. In
particular, what happens if'the consumer is risk neutral?

14 Note that part b says only that @ < 1 at a solution. It doesn’t say that a
solution exists. In particular, what happens ifd >A4?

15 This trick for creating a real-valued random variable X whose cumulative
distribution function is a given F fiom a uniformly distributed random variable

U by the rule X = F'(U) works for general cumulative distribution fanctions
and not only those that arise from simple probabilities.



Chapter Seven




Dynamic Choice

This short chapter concerns two elaborations on the general theory of choice:
dynamic choice, and static choice within a dynamic context.

To explain what this means, consider the fllowing simple example. A
decision maker is choosing her dinner in two stages: In the first stage, at time ¢
= 0, she chooses amenu of meals. In the second stage, at time? = 1, she
chooses ameal from the menu she selected at the first stage. To make this
formal, start with a finite set X of meals, and form from it the set Z consisting of
all nonempty subsets of X; Z is the set of menus. At time ¢ = 0, she chooses a
menu z ffom some available subset 4 & Z; at time ¢ = 1, she chooses some x
from the menu z she selected at the outset. Her dynamic choice is the sequence
of two choices she makes, first z ffom 4 and then x from z. If we wanted to
formalize dynamic choice with choice functions, we’d have, say, a pair of choice
functions, ¢, a choice finction defined on the subsets of Z, and ¢, a choice

function defined on subsets of X (parameterized, if necessary, by things that
happen between the two moments of choice). Or we might formalize things with
preference relations =0 and =1 or with utility functions u, and u; to be

maximized (with ‘-_1 or u; bearing any necessary parameters). If on the other

hand, we are interested solely in the first-stage choice of a menu, that is static
choice within a dynamic context; the standard theoretical constructs of a choice
function, a preference relation, or a utility fanction would be employed, all
defined on Z, but (presumably) exploiting the special structure that Z possesses
and taking into account the dynamic context of'this first-stage choice.

This example illustrates what the terms mean, but it fails to do justice to
the importance of the topic. Among the most important economic decisions
made by individuals are savings and investment decisions, which fit fully into
these categories. The term investment should be read broadly here, to include
education decisions as well as any other decision to acquire information for later
use. Job choice also fits, insofar as the choice of what work to do today both
enables and constrains later opportunities for work. Indeed, it is hard to think of
any significant economic decision that neither is part of a linked series of
decisions (hence dynamic) nor has implications for later decisions (hence is
taken within a dynamic context).



Given the importance of these sorts of choices, three questions are obvious:

Ju—

How should dynamic choice, or static choice within a larger dynamic
context, be modeled?

2 . Does the dynamic context provide structure that can be exploited, to
refine the basic models of choice from Chapter 1?7 For instance, in our
example, first-period choice entails the choice of sets of objects. Letting

denote the decision maker’s preferences over elements of the set of menus Z,
can we say anything about "~ for sets z and z’ where z is a subset ofz”? Ifz

%= 2, are there any implications for how -, behaves on the union of these

sets?

w

Does the dynamic nature of the problem raise issues that push us to
rethink and, perhaps, modify the basic models of choice from Chapter 1?
Do dynamics, per se, cast doubt upon the basic axioms and properties of
our models of choice?

These may seem obvious questions, but they are rarely asked or explicitly
answered. The answer to the first of these questions is deemed to be obvious, so
obvious that the answer is only given implicitly (that is, the answer is assumed
without any comment), and so the second two questions never arise. Recent
developments in so-called behavioral economics have begun to direct attention
to these questions, however. In this chapter, the “obvious answer” is presented,
and then I will argue that it is anything but obvious and that, in consequence,
all three questions deserve the attention they are beginning to receive.

7.1. The Standard Strategic Approach

The standard approach to dynamic decision making (and to decision making
within a larger dynamic context) is to regard the decision problem as one of
choosing, at the outset, an optimal overall strategy and then implementing it
flawlessly. Optimality is determined according to the outcome engendered by
the strategy; outcomes are (within the model) what matters to the decision
maker, over which the decision maker has Chapter-1-style preferences (or
utility). Let me illustrate with two examples:



Example 1: Menus and meals

Begin with the simple menus-meals example. An outcome in this case is
(assumed to be) a meal, and the decision maker is assumed to have complete
and transitive preferences over meals. Since X is finite, a utility function u : X
— R can be constructed to represent those preferences. To make things very
concrete, suppose that X = {c, s, f}, where c is a meal of chicken, s is steak, and
f is fish, and suppose that the decision maker’s preferences over X are
represented by the utility function u(f) = 2, u(c) = 1, and u(s) = 0.

The space of menus, Z, is the space of all nonempty subsets of X so, in this
case, Z has seven elements. A strategy is a complete plan of action for all
choices that need to be made; a strategy in this case takes the form of “choose
some z and then some x from the chosen z.” So, for instance, if the decision
maker has an initial choice of the four menus

{e.sh {e ) A7 s b,

then she has available eight strategies, among which are “choose {c¢, s} and
then ¢,” “choose {¢, s} and thens,” and “choose {f} and then /"' Let me
temporarily number these as strategies 1, 2, and 3, respectively.

Each strategy gives an outcome. For instance, strategy 1 gives the outcome
¢, while strategy 3 gives the outcome /. And strategies are ranked according to
the outcomes they engender. So ffom the utility function u on outcomes, we
conclude that strategy 1 provides utility 1 (since it provides outcome ¢ and u(c)
= 1), while strategy 3 provides utility 2.

The optimal strategies are those that give the best outcome, measured in
terms of preference or utility. In this case, there are three optimal strategies,
namely, “choose {c, f} and then f,” “choose {f} and then f,” and “choose {f, s,
¢} and then f” There is nothing mysterious here: A meal of fish is the best
outcome, so the optimal strategies are precisely those that give this outcome
(assuming that some strategy in the fasible set provides this outcome).

The standard model of dynamic choice, in this context, has the decision
maker evaluating each available menu to find one that provides her the best meal
according to her preferences; then she implements the (or, an) optimal strategy
as time unflds. If our interest was only in her static choice of a menu, the



model begins the same way: Evaluate the menus to find one that gives the best
meal, then (at the initial decision point) pick any menu that qualifies.

Example 2: Consumption-savings

A somewhat less trivial example concerns a decision maker who possesses
$1000 in wealth at time r = 0 and who must decide, at datesr = 0, 1, 2, ...,
how much of her wealth to consume and how much to set aside in savings for
future consumption. To keep the story relatively simple, we assume money not
saved is directly consumed (that is, the decision maker “eats” money). Let w,
denote her wealth at time ¢ (before she decides on time # consumption) and c,,

the amount she chooses to consume, so her savings exiting this time period are
w, —c. Given this savings decision, her savings w, at timez + 1 are
determined by a random process in which w, | = 1.05w, or w,, | = 1.12w,, each
with probability 1/2 and independent of past rates of return on her savings.
(That is, she earns either 5% or 12% on her savings, determined by a coin flip.)
At time#, when she is choosing ¢, she knows w, but she doesn’t know

anything about future returns except the probabilistic law just given; she does
know her past consumption decisions, of course, and past rates of return.

An outcome for this decision maker is the sequence of her consumption
levels, (cyp, ¢}, ...)- Or, more precisely, since there is uncertainty in this
problem, an outcome for her is a probability distribution over the sequence (cy,
¢y, ...). It is assumed that her preferences over random consumption sequences
are represented by expected utility, where the (von Neumann—Morgenstern)
utility finction U(c, ¢y, ...) for this decision maker is

s 4 g
Z 0.9¢, "
=0

That is, the decision maker makes consumption-savings decisions in whatever
manner maximizes the expectation of this utility function.
A strategy in this example is a plan that says how much to consume and



how much to save out of w, at time 0, how much to consume and how much to

save at time 1, contingent on her time 0 decision and the return she got on her
savings between times 0 and 1, and so on, for all #. Constraints are imposed:
Consumption cannot be less than zero in any period, and (we assume) ¢, must

be no larger than w/; the decision maker cannot borrow; she can only save. So,
for instance, one strategy is to consume $300 each period unless and until w,

falls below $300; if and when it does (and, in fact, it is sure to do so, since
savings grow by at most $120 per period), consume 10% of current wealth until
it falls to $1 or less, if it ever does so; at which point consume all that is left
immediately.”

Every strategy engenders a probability distribution on (¢, ¢y, ...), which (in
the standard approach) determines the quality of the strategy: strategies are
evaluated according to the expected utility of the consumption sequence they
engender. An optimal strategy is one that makes this expected utility as large as
possible; our decision maker, per the standard approach to dynamic choice,
follows the dictates of an optimal strategy (or the optimal strategy, if there is
only one). Given the vast multitude of strategies, you might wonder if we could
ever solve this problem. But we can: It turns out that, in this case, the optimal
strategy is to set ¢y = $121.38 (approximately) and, in later time periods, to set

¢, = 0.12138w, (again, approximately), whatever is w,. That is, it is optimal to

consume around 12.138% of one’s wealth and save 87.862%, regardless of the
value of w, and regardless of how w, got to be that level. (I’1l explain the source

of'this particular rabbit-from-the-hat answer in a bit.)

These are but two examples; if you want to see some others, Appendix 6
provides a selection. They illustrate the standard approach to modeling dynamic
choice, which is to reformulate the problem as being a static or atemporal choice
ofan optimal strategy:

* The model specifies a space of outcomes of interest to the decision maker,
as well as her preferences (typically represented by a utility function) over
outcomes. As the consumption-savings example indicates, the term
outcome here should be read broadly: outcomes are very typically
probability distributions over some set of ““prizes,” with preferences that are



(then) often of the expected-utility variety.

*  The model also specifies the details of the decision maker’s dynamic
decision problem: when decisions/choices are called for; what options are
available; and what information is available on which basis the decisions can
be made. From these items, the full range of dynamic strategies available to
the decision maker is constructed.

* The model describes the connection between strategies and outcomes: what
outcome will be engendered by each strategy.

* The decision maker evaluates each strategy according to her preferences over
the outcomes, and she identifies strategies that provide the best outcomes,
where “best” reflects her preferences over outcomes. She then proceeds to
implement (one of) the optimal strategy(ies).

Three implicit assumptions in this approach deserve to be made explicit.

1. The decision maker has (and acts on) fixed, atemporal preferences over
outcomes. She will not change her mind about what she wants.

2. From the outset, the decision maker has full “strategic awareness” of what
options she has and will have and how her decisions will translate into
outcomes. All this is allowed to be dependent on the resolution of uncertain
events. But unforeseen contingencies, previously unappreciated options, and
the general law of unintended consequences are not (relevant) parts of her
vocabulary and, in particular, she makes no allowance today for any such
possibilities affecting her in the future.

3. She has the cognitive and computational abilities required to evaluate all
the strategies she has available or, at least, to find one that is optimal.

7.2. Dynamic Programming

The third of these assumptions speaks to the proverbial rabbit I pulled out of a
hat in the second example, when I announced that the optimal strategy in the
consumption-savings problem is to consume 12.138% of one’s wealth in each
period. A lot of strategies are possible in the second example, and connecting
them to the probability distributions over consumption sequences, evaluating
the expected utility of each, and then finding the strategy that maximizes



expected utility, would seem quite a chore. Happily, mathematical techniques
can be employed that identify the optimal strategies for problems such as this
one, techniques that fall under the general rubric ofdynamic programming.
Appendix 6 provides a primer on those techniques and, in particular, provides
the solution ofthe consumption-savings problem as an example.

It is perhaps worth noting that these techniques identify optimal strategies,
they don’t find the value ofall alternatives. I have no idea what expected utility
is generated by the complex strategy (Start with ¢, = $300 and then ...), but

dynamic programming tells me that (a) the “spend 12.138...% of your wealth”
strategy generates an expected utility of around 70.448 (if you start with $1000)
and (b) no alternative strategy does better than this.

You are invited to leamn the techniques from the appendix if you don’t
already know them, but with two strong warnings: First, the appendix is around
50 pages long. And, second, even at 50 pages, it only provides techniques
useful for solving a limited number of problems. It is true that the overlap
between the problems that can be addressed with the techniques in the appendix
and those tackled in the literature is substantial. But this is mostly because
problems in the literature are there at least in part because they are simple
enough to be solved. (Il return to this point later.)

7.3. Testable Restrictions of the Standard Model

Since I keep referring to the standard model and the standard approach, I must
have in mind alternatives. Since I went out of my way to highlight the three
implicit assumptions listed above, my alternatives presumably involve
violations of those assumptions.

To be precise about alternatives, begin with the question: What sort of
observed behavior can we say is inconsistent with the standard model? Tackle
this question in the context of the first sort of problem: A decision maker
chooses an object from a finite set X in two stages. First, she chooses a subset of
X; then she chooses an x from the subset chosen in the first stage. As before, Z
is the set of all nonempty subsets of X.

By the standard model in this context, we mean: There are complete and
transitive preferences '~ on X, such that at the first stage, the decision maker

(weakly) prefers one menu z to another z’ if and only if the “—-best meal in z is



preferred to the “—-best meal in z". Equivalently, for some function u : X — R,
the menu z is (weakly) preferred to z"ifand only if max, ¢, u(x) > max, </ u(x).

And, in the second stage, the decision maker chooses ffom z some meal that
maximizes u over z.

The precise question we will answer is, Given the decision maker’s choice
behavior concerning menus, when is that choice behavior consistent with the
standard model? As the previous paragraph makes clear, if stage-one choice is
consistent with the standard model, it (to begin with) satisfies all the usual
general rules of “rational” choice; that is, choice of a menu satisfies (finite)
nonemptiness and choice coherence and (equivalently) can be rationalized by a
complete and transitive binary relation on Z. We know this because first-stage
choice corresponds to maximization of a real-valued function, namely U : Z —
R defined by U(z) = max, <, u(x). In view of this, the proposition that answers

this question will assume from the outset that first-stage choice behavior
conforms to a complete and transitive relation *— on Z. We let - denote the

corresponding strict preference relation and .:, the corresponding indifference
relation.

Proposition 7.1.  Suppose first-stage choice conforms to a complete and
transitive relation *— on Z. Then it conforms to the standard model of dynamic

choice (as defined above, in this specific context) if and only if it satisfies the
further condition that, for all z and z', if z '~ z', thenz .z U z'.

Proof. If first-stage choice of a menu conforms to the standard model, then it
conforms to maximization of a finction U : Z — R that, in turn, is given by

U(z) = max, <, u(x) or some u : X — R. But for any such U, z “ z' implies

Uiz) > U(z") implies max, ¢, u(x) > max, . u(x) implies max_sz u(x) =

X Ez
max, e, u(x), which is Uz) = Uz U z'), whichisz ..,z U z"

Conversely, suppose first-stage choice of a menu conforms to preference
maximization for a complete and transitive preference relation % that has the

farther property: z .o, z' impliesz ., zUz’ Since Z is finite, ' has a

numerical representation U : Z — R; fix one such. For x € X, define u_:X — R



by u(x) = U({x}). I assert that U(z) = max

e ux) for this u; this is proved by
induction on the size ofz: It is true by definition for singleton sets z, so suppose
inductively that it is true for sets of size n — 1 or less. Let z be any set of size n
> 1. Letx’ be any element ofz, and letz’ =z \ {x°}. By the induction
hypothesis, U(z) = max, < u(x). Consider two cases: u(®) < U, and u(:) >
Uiz".

In the first case z" . {xo}, so by the extra property, z' U {xo} =2z gy 25
hence U(z) = U(z). But also in this case, max, <, u(x) = max{u(xo), max, ¢
u(x)} = max, ¢ u(x) = U(z'), and hence max, ¢ u(x) = U(z).

And in the second case, U({x"}) = u(x®) > U(z), which implies {x’} 'z,

hence (by the extra property) {x°} 5 (% U z' =z and hence u(x) = Uz).

But also in this case u(xo) > Uz') = max < u(x), and therefore u(xo) = max, g,

X Ez
u(x). Hence U(z) = max, , u(x).

In either case, U(z) = max, <, u(x), establishing the induction step and the
truth of this equality for allz € Z. Which means that first-stage choice
conforms to the standard model. pg

The symbols may make a very simple idea seem complex. In the standard
model of dynamic choice (in this context), a menu is as good as the best meal it
contains, where “best” is in terms of the decision maker’s atemporal preferences
over outcomes. But then one menu is at least as good as a second if and only if
the best meal in the first is at least as good as the best meal in the second, in
which case one of the best meals in the union of the two menus is the best meal
in the first, and the first menu is just as good as the union. This is the argument
fr why the extra property z . z' implies z ., z U z' is necessary for the
standard model to hold; the argument that this extra property is also sufficient
just turns this argument on its head.

Two comments are in order about the title given this section, “Testable
Restrictions of the Standard Model.”

First, we have both “the standard model of dynamic choice” and “the
standard model of static choice (of a menu) in a dynamic context.” The



proposition is clearly about the latter object. It characterizes (only) the decision
maker’s first-stage choice of a menu, albeit bearing in mind that her choice of a
menu is only the first stage in a two-stage choice process. We could instead
speak of her first- and second-stage choice behavior, wondering whether they
together conform to the standard model. But, in this simple context, if you
know her first-stage preferences *— over menus, then you know what, according

to the standard model, she must do in the second stage: In the standard model,
her first-stage preferences among singleton-set menus {x} tell you what
preferences govern her second-stage choices.

Second, the “testable restrictions” part of the section title sounds like: We
have empirical data about choices the decision maker has made. But the
proposition imposes its test on something decidely more ephemeral, namely all
of .. We’ve run into this issue previously, specifically, in Problem 1.16 and

then in Chapter 4: Observing some choices actually made is not much grist for
any empirical test of theories of choice that permit everything to be indifferent to
everything else (in which case, any pattern of choice is consistent with the
theory). One needs some data about strict preferences. Back in Problem 1.16 and
Chapter 4, the emphasis was in seeing some (but not all) expressions of strict
preference; here, in constrast, we have all the data about preferences, but in a
context where the objects chosen are sets, and it is the set structure that gives us
the needed grist.

As an alternative where we work with fewer but richer data, imagine
embedding this two-stage choice problem into one slightly larger. Imagine that
the individual is choosing pairs of the form: a menu z from which a later meal
will be selected and an immediate, one-dimensional reward » for which more is
unambiguously better. If we see an individual choose the menu z and immediate
reward » when z' and r are available, but we also see her choose z U z’ together
with 7 — ¢ for any positive ¢ when (z, 7) is available, then we know that the
standard model has a problem.? Under the standard model, the first choice tells
us that a choice out of z, together with r, is at least as good as a choice out ofz".
Why, then, is she willing to give up the valuable ¢ to maintain the flexibility
provided to her by z U z?

Or, with the same embedding, suppose that we look at two menus, z and z’,
where z' S z but z #z'; that is, z' is a strict subset ofz. Under the standard



model, there is no conceivable reason for her to choose z’ and » — £ over z and
r, for any positive . There is no reason, in other words, for her to devote

valuable resources in order to restrict her own (subsequent) choice set.* Thisis a
fairly general characteristic of the standard model of dynamic choice, one that
transcends this simple context: The standard model presumes (pretty explicitly)
that the decision maker has unchanging, atemporal preferences over outcomes,
and she chooses strategies according to those preferences. Why, then, would she
have (or exhibit) a strict preference for constraining her own choices?

7.4. Three Alternatives to the Standard Model

The possibilities raised in the previous two paragraphs lead to alternatives to
the standard model that have been explored in the literature.

Changing tastes and self-control

Return to the very specific example where f'is a meal of fish, ¢ is chicken, and s
is steak. Consider the first-stage preferences

{F}Af ep{eb={f . e, s}{f, spfe, spo{s}.

(Throughout this section, first-stage choice of menus will always be consistent
with complete and transitive preferences, so you can use the standard transitivity
rules to fill out the preference relation.) The decision maker with these first-stage
preferences explains:

I have a problem with my cholesterol levels and so should avoid steak.
I know this, but I also know that if and when I get to the restaurant, if
steak is on the menu, the temptation will be too much for me. Fish is
best for me, and I can resist the temptation to have chicken instead of
fish, if both are on the menu. But I’ll give in to steak if it is there,
S0...

This individual’s selfcontrol issues can be thought of as a matter of an
anticipated change in her tastes. At the moment she is choosing a menu, her
preferences over meals (given, essentially, by her preferences over singleton



menus) is fi—g c—( 5. But when she gets to the restaurant, her choices (if her

initial choice of menu has left herself with any choice) reveal a diferent set of
tastes: s%— fs— c. Anticipating this, at the first stage, she chooses menus in a

way that serves her ¢ = 0 tastes by constraining her later options: {f} and {f, ¢}
are the best menus, because they will result in fish, ©llowed by {c} which will
lead to chicken, followed by the four menus that have steak, since she
anticipates that her later self will choose steak, and steak is the worst choice for
her (in terms of her ¢ = 0 tastes).

This rationalization has three parts: (1) The decision maker’s tastes will
change between the times when she chooses a menu and when she chooses a
meal. (2) She anticipates the change. (3) When she chooses a menu, she acts in
a way that favors her current tastes among meals. First-stage preferences would
be different if she didn’t anticipate the change in her tastes, or if she anticipated
those changes, but decided that her second-stage preferences should govern; if
either of those were true, she wouldn’t be in the business of constraining her
own later choices.

In the economics literature, the idea that tastes may change in an anticipated
manner and so, to favor current tastes, an individual may constrain her own later
choices, goes back to original work by Strotz (1955-6). But the idea goes back
much further than that; it is classic in the full sense of the word: In the Odyssey,
Odysseus, wanting to hear the song of the Sirens but wanting not to throw
himselfonto the rocks, has his crew bind him to the mast, while they plug their
own ears.

Note that there is more here than a realization that having chicken for lunch
affects the desirability of chicken for dinner, or that drinking single-malt whisky
today positively affects one’s taste for single-malt whisky in the future. Those
effects can be accommodated in models where tastes for consumption tomorrow
are not separable (in the sense of Chapter 2) ffom what is consumed today but
where one’s preferences over consumption bundles through time are unchanging.
If preferences for lifetime consumption bundles are unchanging, the decision
maker never has an active preference for constraining her later self 5

Along the same lines, imagine the ©llowing first-stage preferences:

{f1~Af et={ct={f e, s}~{f, st~{c, s}p~{s}.



The story behind these preferences begins the same way: This decision maker
has problems with her cholesterol and should avoid steak for dinner This
decision maker also has selfcontrol issues, but she is stronger willed than the
previous individual; she will be able to order fish fiom {f, ¢, s} and from {f, s}
and to order chicken ffom {c, s}. But the effort of resisting the lure of a steak
dinner is costly to her, and she’d rather not have the temptation, so (for
instance) {f, ¢} «_ {f ¢ s}.

In the first story, a characteristic of >_ is that, for all z and z' such that

(without loss of generality), z % z', eitherz Uz’ o,z orz Uz’ -, z" To
explain, some x will be chosen ffom z in the second stage, and some x' from z’
z w2z’ Pllows if {x}  {x'}; that is, if the first-stage preferences prefer the

second-stage choice out ofz. Assume this is so. When looking at z U z’, and
assuming away for simplicity the issue of ties in second-stage preferences, the
question is, Will the second-stage preferences result inx being chosen—in
which case z U z' ., z—or will x" be chosen, resulting inz U z' .z, z"? One of
the two must hold, and therefore we have the stated property. (See Problem
7.3.) In the second story, where selfcontrol may be possible but is
psychologically wearing, we might havez  z'andz ,z U z'*_ z'; a menu
that is the union ofz and z' might result in the preferred (in terms of stage-one
preferences) meal, but at a pyschological cost from the effort at selfcontrol.

And, in fact, these sorts of properties for “ can be shown to characterize, in
the first case, a simple model of changing tastes (where the psychological costs
of exercising selfcontrol do not enter, because second-stage urges cannot be

controlled), and in the second case, a more complex model with selfcontrol
costs. The theory is developed in Gul and Pesendorfer (2001).

Unforeseen contingencies and preference for flexibility

Now imagine a decision maker who, at the first stage, expresses the ©llowing
preferences over menus:

{es, fids, Fi={f.ep~{f}={s,cpisb=1c}.



Since {f; ¢} «_ {s} and yet {s, f, ¢} ~__ {f, ¢}, this doesn’t Pllow the standard
model. Asked to explain, this decision maker tells the ©llowing tale:

I am pretty sure that I would like to have fish for dinner, in preference
to steak or chicken. In fact, I can’t foresee any specific circumstance in
which this wouldn’t be so. But, in my lif, I’ve sometimes met up
with contingencies that I didn’t foresee, and I suppose there is a chance
that I might wind up prefrring steak. Hence 1 hedge, with a slight
preference for {c, s, f} over {f, ¢} (and, for that matter, over {f}). I
reiterate, I don’t foresee any specific reason that this might happen and,
in consequence, these strict preferences are very slight. But however
slight, they are there. And, since you are wondering why this same
consideration doesn’t have me rank {c, s, f} over {s, f} or {f, ¢} over
{f}, the answer is that I absolutely hate chicken, and I simply refuse to
acknowledge even the slightest possibility of an unforeseen contingency
in which chicken beats out fish.

The last part of this rationalization seems to me questionable: This decision
maker appreciates the possibility, however slight, of one sort of unforeseen
contingency but not another. But they are her preferences, and I want to focus on
the first part. In the standard model, one implicit assumption was that the
decision maker had full strategic awareness of the situation, which is a dubious
assumption to make of anyone.6 Recognizing that this may not be so, the
decision maker just described is prepared to sacrifice (at least) a bit of resources
to maintain her flexibility of choice.

This suggests that, as a general rule, preferences in the first stage ought to
satisfy z . z" ifz’ < z, which is implied by but a good deal weaker than the

property Eveloped in Proposition 7.1 that is observationally equivalent to the
standard model. Consider, in this regard, the following:

2’ Crzand 2'~z implies 2’ Uz2"~2U2"forall2” € Z.

In words, suppose z’ is a subset ofz butz’' ., z. Then the extra flexibility
afforded the decision maker inz instead ofz' is deemed to be of no value



whatseover. Ifthis is so, then (presumably) the extra flexibility ofz U z” over z'
U z"is of no value—either something in z” will be selected (and is available in
either case), or we are back to the z versus z’ comparison.

If a decision maker, in her first-stage preferences, exhibits general preference
for flexibility but tempered by the property just displayed, her first-stage
preferences over menus can be given a very simple representation that suggests a
decision maker who admits the possibility of contingencies that are unforeseen
and makes some allowance for them; that is, there are in the representation both
exogenously given states of nature, representing contingencies that are foreseen,
and also states of nature that arise endogneously (that are constructed from the
individual’s preferences) to explain the preference for flexibility. See Kreps
(1979a, 1992).

Complexity and heuristics

Although the menus-and-meals problem is quite simple to solve according to
the standard method of dynamic choice, most dynamic choice problems are
complex. To solve the second example that is given, the consumption-savings
problem, requires techniques that most first-year graduate students in economics
will be seeing for the first time. And this problem is solvable because of some
specific features in the formulation: The problem is stationary (Appendix 6
explains what this means); the distribution of returns in each period is known to
the decision maker and independent of past returns; the utility function over
consumption streams is additively separable, with a per-period utility function
that takes a particularly convenient functional form. If any one of these
assumptions is relaxed, the problem will probably become intractable.

In Chapter 1 it says, “Just because consumers don’t actively maximize
utility doesn’t mean that the model of utility-maximizing choice is a bad
descriptive or positive model. To suppose that individuals act as if they
maximize utility is not the same as supposing that they consciously do so.” In
the current context, the argument would be: Even if dynamic decision problems
are so complex that economists specially trained to solve them can do so only if
a lot of simplifying assumptions are made, real-lif dynamic decisions, made
through guesswork and heuristics, come close to the decisions that would be
made by ideal dynamic decision makers who followed the standard dynamic
approach. Modeling with the standard approach may be an unattainable



idealization, but it provides a good positive model of the somewhat messier
reality.

That is an interesting assertion, but if it is to be taken seriously, either
theoretical or empirical justification for it ought to be pursued. It isn’t hard to
model the sorts of heuristics that are employed in the face of complexity—at one
end of the scale are simple psychological models of satisficing and goal setting;
at the other end in terms of sophistication are the modeling and
econometric/fitting techniques that economists themselves employ when trying
to find optimal economic policies—and it should be possible to categorize
environments in which a particular heuristic works well or not. In fact, work
along these lines has been done: In the 1980s, a number of studies were made of
how (well) decision makers would learn through time the relationship between
equilibrium and prices, if that relationship co-evolved with what the decision
makers were learning; in the 1990s, a modest literature was created about
learning in the context of repeated play of games. Rust (1987) provides a
marvelous empirical study (albeit very specific) of whether a real decision maker,
through intuition or heuristics or whatever, approaches the optimal solution ofa
complex dynamic decision problem. But much more work of this sort should be
done before we accept the assertion or, what is more likely to be the outcome,
before we understand when the assertion is reasonable and when it is not.

And the complexities of dynamic decision problems raise another
possibility. So far, in proposing alternatives to the standard model, we’ve
looked at alternatives where, at least, choice at any single point in time (that is,
static choice within a dynamic context) follows the rules of Chapter 1: Some
large set of conceivable objects (menus, consumption levels) is given, and
choice ffom a feasible subset of the larger set is according to complete and
transitive preferences on the larger set. At the start of this discussion, we asked
Does the dynamic nature of the problem raise issues that push us to rethink
and, perhaps, modify the basic models of choice from Chapter 1?7 Do
dynamics, per se, cast doubt upon the basic axioms and properties of our
models of choice? At the level of choices made at a single point in time, the
answer has been no.

But dynamic problems tend to be complex, and complexity could be a
reason to doubt the basic choice constructs of Chapter 1. Faced with a complex
decision problem, one in which there are many options and/or options whose



eventual consequences are difficult to evaluate, the decision maker might resort
to heurisitics or rules of thumb. When evaluating options from a large set of
options, the decision maker might choose to focus on a limited set of
characterisitics, where the characteristics chosen are influenced by the full set of
immediately available options. This isn’t a consequence of the dynamic context
per se. But dynamic considerations breed complexity, and complexity breeds
rules of thumb that could lead to violations of Chapter 1 principles.

A temporary bottom line

The economic importance of dynamic decisions and of static decisions made
within a dynamic context cannot be questioned. If the models of choice that
were developed in earlier chapters cannot be adapted to dynamic contexts, then
they aren’t of much use in exploring important economic issues. Economists
have, for the most part, taken the models of Chapters 1, 2, 5, and 6, all of which
are developed as static models of (once-and-for-all) choice, and adapted them to
dynamic contexts through the standard method of regarding dynamic choice as
being the static choice of an optimal dynamic strategy.

If you accept this, then what remains to do concerning dynamic choice is to
learn how to solve the relatively complex optimization problems that arise in
dynamic choice contexts. Or, what is in fact more accurate, one must jointly
learn how to formulate problems that are sufficiently simple to be solved and
then solve them. This is the purpose of Appendix 6.

But, especially in light of the importance of decisions made in dynamic
contexts, it is important to understand the behavioral assumptions and
limitations of this standard method and to study both the robustness of the
standard method and alternatives to it. With the rise of behavioral economics,
this has been an increasingly important part of economic theory. But a lot of
work along these lines remains to be done.

Bibliographic Notes

Finding a precise statement of the standard strategic approach to dynamic choice
in the literature is, I believe, impossible. It seems to have the status of lk
wisdom; it has always been the way to do things. Methods for solving
reasonably complex problems with this approach, methods of dynamic
programming, were developed by a variety of authors in the 1950s and 1960s;



important names in this development are Richard Bellman for the findamental
ideas and David Blackwell and Ralph Strauch for more formal developments.
Textbook references are provided in Appendix 6.

The changing-tastes alternative entered the economics literature in R. Strotz
(1955-6). Schelling (2006, Chapter 1) provides a fascinating discussion. Gul
and Pesendorfer (2001) is the essential reference in the formal aspects of this line
of research, which has been fairly active recently. (See also Gul and Pesendorfer,
2005.) “Preference for flexibility” and an interpretation of this as a manifestation
of unforeseen contingencies is provided in Kreps (1979a, 1992). This is also a
somewhat active topic. Models of heuristics employed in complex dynamic
choice situations have tended to concern very specific contexts, such as rational
expectations equilibria or learning in games: Sargent (1999) provides a
wonderful application of these ideas to macroeconomic policy; Fudenberg and
Levine (1998) summarizes and extends much of the literature related to game
theory.

Problems

Appendix 6 gives a number of problems to be solved with the methods of
dynamic programming (and works through many of them); you should certainly
read through the solution of those for which solutions are provided (such as the
consumption-savings example given in this chapter) and provide solutions for
the rest. The problems provided here concern some of the alternatives to the
standard approach to dynamic choice discussed in the chapter As such, they
constitute a further digression from the basic trajectory in this book and can be
skipped without compromising your understanding of the rest of the text. For
this reason, the first three of these problems are solved in the Students Guide,
and I provide a reference where you can find the solution to the last problem.

m *7.1. Imagine a decision maker who must decide how much asparagus and
how much broccoli to eat in each of two time periods, = 1 and ¢ = 2. Let a, be
the amount of asparagus consumed in period ¢, and b, the amount of broccoli
consumed in period z. Suppose the price of broccoli and asparagus are both a
constant $1 (in both periods), and the decision maker has a total of $100 to
spend on these four commodities.



(a) At time ¢ = 1, the decision maker’s preferences are given by the utility
function

ulay. az, by, ) = In(ag) + Infaz) + In(hy) + In(hy).

If the decision maker is able to choose at time? = 1 (according to these
preferences) how much of each vegetable to consume, what will she choose?

(b) Suppose instead that the decision maker chooses, at ¢ = 1, the amounts ofa;
and b; to consume, and also the amount s, of savings to set aside for period 2
vegetable purchases. Then at time ¢ = 2, she decides how to spend the s, she
saved on a, and how much to spend on b,. To be very clear, at time # = 1 she
is choosing @, by, and s, subject to the budget constraint a; + b; + s, < 100,
and at time ¢ = 2 she is choosing a, and b, subject to the budget constraint a,
+ b, <s;. (Her savings earn no interest. To keep matters simple, assume that
all variables including s are constrained to be nonnegative.) Assuming that her
preferences are unchanging and the standard methods for dealing with dynamic
choice problems are employed, what does she choose to do?

(c) Now suppose that asparagus is something of an acquired taste. What this
means is that the utility she derives ffom consuming asparagus at time ¢t = 2
increases with the amount of asparagus she consumes at time ¢ = 1; her utility
function is

u(a, ag, by, bp) = In(ay) + (1 + a1/25) In(az) + In(hy) + In(ly).

If she made all her vegetable purchases (to maximize this utility function) at the
outset, what would she choose to do? If she made her vegetable purchases in
two steps, as in part b, but with the objective of maximizing this utility
fanction, what would she do? (You probably will need to solve this problem
numerically rather than analytically.)

In parts d and e, we enter into the world of changing tastes. Specifically, at time
t = 1, the decision maker’s preferences over the outcome (a;, a,, by, b,) are



given by the utility function # fom part a of the problem. But, if she has
choices to make at time ¢ = 2, she will act in a fashion to maximize

ua(az, bo; a1) = (1 + a1 /25) In(az) + In(ba).

Note that in posing her time ¢ = 2 preferences in this fashion, we are implicitly
assuming that a; and b, are already fixed and determined; any remaining choices
concern a, and b, only. But the level of a; enters her preferences parametrically,
affecting how much utility she gets ffom time 2 consumption of asparagus. In
this case, rather than saying that asparagus is an acquired taste, we might
describe what is going on by saying that asparagus is addictive, in that her
tastes for a, (relative to the other goods) changes based on her experiences with

a;.

(d) Suppose that our decision maker chooses in the fashion of part b—at time 1,
she chooses ay, b, and s;—but she does not anticipate at # = 1 that her tastes

will change at time 2 in the fashion described. Instead, her choices at t = 1 are
made under the mistaken belief that her tastes at time 2 will stay what they are
at time 7 = 1. (In the literature of changing tastes, this is what is known as naive
choice.) What happens?

(e) And suppose that our decision maker chooses in the fashion of part b, but
she is aware of how addictive is asparagus: She anticipates at time 7 = 1 that, at
time ¢ = 2, she will seek to maximize u,, and she chooses at timet = 1 to

maximize her times = 1 overall preferences with that anticipation. (In the
literature of changing tastes, this is known as sophisticated choice.) What
happens?

W *7.2. Much of the recent literature connected to ““changing tastes” concerns
so-called hyperbolic discounting. This concerns problems in the intertemporal
allocation of resources or, in simple form, consumption-savings problems. The
idea is that if you ask someone, “Would you rather have $1 today or $1.20
tomorrow?” she wants the $1 today, but if the question is, “ Would you rather
have $1 tomorrow or $1.20 the day afier?” the $1.20 is chosen. And, the point



of this, this is true tomorrow as well, meaning: Tomorrow, $1 today is preferred
to $1.20 tomorrow. In other words, people tend to discount the future, with the
greatest discount applied between today and next period, and this remains true
when next period comes around.

Ifthis isn’t clear, here’s a problem: A decision maker has $100 to split between
consumption today (¢ = 0), tomorrow (¢ = 1), and the day after (+ = 2). Today, i
¢, is the level of (dollar) consumption on date #, the decision maker’s utility

function is
ulcg. 01, €3) = v(eg) + 0.5v(ey) + 0.40()

for some strictly concave function v.

(a) Being very concrete, suppose v(c) =2 and suppose that the budget
constraint facing the individual is ¢j + ¢; + ¢, < 100. (This budget constraint

reflects no interest paid on savings. That is, $1 saved today returns the same $1
tomorrow, etc.) Assuming the decision maker can fix ¢j, c¢;, and ¢, today,

subject to this budget constraint, what consumption plan maximizes her utility?

The decision maker cannot fix ¢; and ¢, today; at # = 0, she divides her $100
between immediate consumption ¢, and savings s,. If she savess;, when
tomorrow rolls around, she has s to divide between ¢; and s;, and then she
consumes ¢, = s; the day after tomorrow (at # = 2). If her relative tastes for
consumption tradeofls between penods 1 and 2 don t change—lf att = 1 she
chooses ¢; and s to max1mlzer,, + 0. 5 "— her solution in the

dynamic choice problem will give her the outcome 3 you computed in part a of

the problem. (You can take my word for this.) But, in the story of hyperbolic

discounting, at dater = 1, she will choosec; ands; to maximize
i

1/2 . i
I‘ll S 5 D.b(’z‘l "

(b) Given that this is so, if she acts naively about her changing intertemporal
tastes (see part d ofthe first problem), what is the outcome?



(c) And if she acts in sophisticated fashion about her changing tastes (see part e
of'the first problem), what happens?

m *7.3. Suppose X is a finite set and Z is the set of all nonempty subsets of X.
Suppose that . is a complete and transitive binary relation on Z that, in

addition, satisfies the property that

¥

forall zand 2/, z Uz~ zorz U2 <~ 2

We claimed in the text that this property characterized preferences over menus
(members of Z) that can be explained by a changing-tastes model. This can be
difficult to show in general, so to make it easy, assume as well that }'_,

restricted to singleton sets, is anti-symmetric:

’ S - ; . K
forallz, 2’ € X, if {x}={2'}={z}, thenzx =2".
(In words, this means that the decision maker, if able to commit to a meal, is

not indiferent between any pair of distinct meals.) Suppose that % has these

properties. Define 3‘_*1 and ‘;_—2 on X by

r =o' if {r}={2'}, and x = 2" if {x}~{z, 2}

Show that both '~ and “—, are complete, transitive, and antisymmetric. Show

that, by virtue of anti-symmetry, for each z there is a unique x € z, such that x
t—y x' for all x' € z; let x,(z) be this x. And then show that z .z’ if and only if

o el . . . . - .
T3 (f] =1 Ty (_f } , (This verifies the claim in the text, if we add the
extra assumption. Gul and Pesendorfer (2005) proves the result without the extra

assumption of antisymmetry.)

m 7-4. Suppose X is a finite set and Z is the set of all nonempty subsets of X.
Suppose that . is a complete and transitive binary relation on Z that, in



addition, satisfies the two properties
2 C 7 implies 2= and 2 C2'and 2/~ implies s Uz"<2' Us" forall 2",

Show that this is true if and only if there exists a finite set S and a function U :
X % § — R such that if we define v: Z — RS by

(v(2)), == max Uz, s),

then

!

» =2 ifandonlyif w(v(2)) = u(v(2") for a function
u:R® = Rthatis strictly increasing on the range of v.

In words, the set S is a subjective state space, and U(x, s) gives the utility of
meal x is state s, so that v(z) is the vector of utilities provided by picking, in
each state, the meal that gives the highest utility in that state. The
representation, then, is that z “— z' if and only ifu  Wz) 2u = WZ), for a

function u that is strictly increasing in the vector of state-dependent utilities. (In
fact, one can show that the finction u can be taken to be component-by-
component addition—that is, u(W(z)) = Y ey (M2)), = 2seg MaX, e, U, s),
but getting this additive form is something of a cheat, as explained in Kreps
(1979a). You can find the proof of the proposition, both as formulated here and
then in the additive form, in Kreps (1979a).)

! Readers with some training in game theory and/or in the methods of
dynamic programming may wonder about the way the term “strategy” is
interpreted here. A complete strategy for an extensive-form game or in a
dynamic-programming analysis specifies how the decision maker will act in



every situation in which she might conceivably be called upon to act, including
situations that she herself might preclude by earlier actions she takes. In the
current context, then, one complete strategy would be “choose {c, s}; if{c, s}
was chosen in the first stage, choose ¢; if{c, f} was chosen in the first stage,
choose f; if {f} was chosen in the first stage, choose /" ;if {f, s, ¢} was chosen in
the first stage, choose s.” That is, a complete strategy would specify the second-
stage choice for all available menus, and not simply for the menu that is chosen
in the first stage. Indeed, if you read Appendix 6, concerning the methods of
dynamic programming, you will learn that those methods require this
interpretation of a strategy to work. And, if we take this interpretation, then a
decision maker with a first-stage choice from the four strategies given would
have 48 strategies available instead of 8. For current purposes of somewhat
informal discussion, either interpretation of the term “strategy” is fine, and I'11
work with the one given in the body of the text, since it economizes on
exposition.

2 This is a fairly complex strategy. Note, in particular, that ¢, in this strategy
is not simply a function of current wealth w If w, ever falls to, say, $299, then

the strategy calls for consuming $29.90, and then there is probability 1/2 that,
next period, w,,; will exceed $300. But the strategy, in this case, says to set

¢ = 0.1w,,, even though w,, ; > 300. I point this out to emphasize that there

are a lot of strategies in this problem, and the decision maker is optimizing over
all of them.

3 How can we also see this other choice? As in Problem 1.16 and in Chapter
4, the story, such as it is, is that we face the decision maker with a selection of
hypothetical choices—*“What would you choose if your fasible alternatives
were ...? What if they were ...?”—and we look for consistency in these
hypothetical choices.

4 With reference to the previous footnote, note that this is an inconsistency
that we could see with a single choice. A dynamic decision maker who
conforms to the standard model never expends valuable resources to constrain
her later options. But see the next footnote for an important caveat to this
statement.

5 This is true absent concerns of a wholely different sort: An individual with



unchanging, atemporal tastes may choose to limit the actions she can take at a
later date because of the impact this will have on the actions of others. Army
generals ffom the ancient world are often described as taking actions—burning
bridges behind themselves, placing their army with its rear to a river—that
make retreat impossible. They do this both to imbue their own troops with a
desire to fight, even if they are losing, since no retreat cuts off other options.
And they do this to encourage their opponents not to press on: An army that
cannot retreat is more likely to fight to the death. The conclusion that a decision
maker will never strictly prefer to leave herself ffwer options if her tastes are
unchanging is correct in a single-person decision context; but not in general.
When you see a decision maker taking actions that limit her later choices, you
have to ask: Is she doing this because of the impact it will have on the actions
of others, or because she fears what her own later self might do, given the
opportunities she is eliminating?

01t is obvious, I hope, that the discussion of the last section is directed at the
first implict assumption of fixed atemporal preferences.



Chapter Eight




Social Choice and Efficiency

Our concern so far has been in modeling choice by an individual. Social choice
concerns choice made on behalfofa set of individuals.

The basic question is framed as follows: A social state or outcome x is to be
chosen; X represents the set of all conceivable social states, while 4 offen
represents the subset of X of feasible states. The choice will affect a nonempty set
ofindividuals or households, denoted by H. Each individual # € H has her
own opinion about the various possible social states, given (for the time being)
by a complete and transitive preference relation =, on X. Since the choice of a

social state x affects all the individuals, the choice “should” be made in a way
that takes into account the preferences of the individuals. The question is, How?
More specifically, suppose we want to construct a social ordering *~ on X that

aggregates the preferences ofthe individuals. How “should” we do this?

Having put scare quotes around the word “should” twice, let me explain:
This question raises the prospect of engaging in moral philosophy. As
individuals typically have conflicting preferences among the social states, we
presumably must look for principles that allow us to make good compromises
or value judgments. Some economists are also excellent moral philosophers.
But, as you’ll learn in this chapter, economics, or at least mainstream
economics, has by and large avoided the sort of value judgments that seem to be
needed. Mainstream economics is unwilling to go beyond value judgments that
seem, at least at first blush, to be utterly noncontroversial, leaving a theory of
social choice that mixes negative results about strong social choice criteria with
simple characterizations of the weak criteria that are leff. That’s the plot for this
chapter.

8.1. Arrow’s Theorem

Modern social choice theory begins, and in some senses ends, with a remarkable
result variously known as Arrow’s Possibility Theorem and Arrow’s
Impossibility Theorem. Arrow (1951a) is looking for what he calls a social
preference function. This is a function that maps arrays of individual

1

preferences, ("-—h)hE p» into a social preference relation '—." The idea, in

essence, is that, once we learn the preferences over the social states of each



member # in a society H, the social preference function will tell us what
preferences society should have as a function ofthose individual preferences.2

To keep matters simple, I will assume (as does Arrow) that the set of
possible social states X is finite, and the set of individuals H is finite. The
symbol @ will be used for a social preference finction. The domain of a social
preference function @ consists of arrays of preferences, one for each individual £
€ H, and the range provides preferences on X. Until further notice, we make the
following assumptions about the domain and range of @:

Assumption 8.1. The domain of @ is the set of all H -tuples of preference
relations (\‘—h)hEH’ where each \“—h is a complete and transitive binary

relation on X. The range consists of complete and transitive binary relations
on X.

Both parts of this assumption should be carefully considered. The assumption
on the domain of@ has two significant parts: First, we assume that each
individual 4 € H has preferences over X that are standard in the sense of
Chapter 1. We could, conceivably, be interested in social preferences when
individuals have incomplete or intransitive preferences but, at least in this
chapter, we don’t consider this. Second, having assumed each individual has
complete and transitive preferences, we impose no further restrictions on the
array or profile or constellation of preferences. The social preference function
must deliver a social verdict, for every H -tuple of complete and transitive
preferences. And, the second part of the assumption, the verdict must take the
form of coherent (that is, complete and transitive) preferences over all the social
states so that, presumably, no matter what subset 4 of social states X is fasible,
@ will tell us, given the preferences of the individuals, what society prefbrs..3

In the usual fashion, ifh’s preferences are given by =, then'—, will

denote her strict preferences and ~; her indiference relation. When we want to

compare one array of preferences with a second one, we’ll use;a—L . o

k

and,-\_,';_l For a given social preference function @, standard notational

conventions would have us write ‘p[(}-__h)he ] for the value of the finction @ at

the argument (=), c - That is pretty clumsy, and we’ll also want to be able



to write down the strict preference and indiference relations generated from @[(
s—ppepl- So, on expositional grounds, we’ll denote @[(t—;), < y] simply by

=, with — and ~ the corresponding strict preference and indifference relations;
., ) I . .
we’ll use ~— for (_I}[(,::_— h }hEH :[, and so forth. (Where confusion might

result, I’ll try to clarify.)
Now consider the following three properties for a social preference function
D:

Definition 8.2.
a. The social preference function @ satisfies unanimity if, for any profile
of individual preferences (=), and any pair of social states x and y,

if x%—, y for each h € H, then x '~ y (where '~ is the strict preference
relation that goes with = = @[(—), e -

b.  The social preference function @ satisfies independence of irrelevant
alternatives (IIA) if, for any two profiles of individual preferences (‘—

ey and {}_—'rh:] heH and any two social states x and y such that x

‘=, ¥ if and only ifx',':—;lyforallh € H, x "= yifand only if x '='y.

c.  The social preference function @ is dictatorial if there is some W EH
such that, for every profile of individual preferences (=), e and every
pair of social states x and y, X =« y implies x ‘= y.

In words: (a) @ satisfies unanimity if whenever every individual strictly prefers
x toy, then the social preference function has x strictly preferred to y. (b) @
satisfies IIA if the social preference function’s decision about x versus y depends
only on how each individual feels about x versus y. (c) @ is dictatorial if some
individual’s strict preferences about any two states x and y are decisive: if she
strictly prefers x to y, then the social preference function says that society does as
well, even ifeveryone else strictly prefers y to x.

It is hard to argue against unanimity as a desirable property for a social
preference function, at least if the objective is to find a rule that respects the
desires of the individuals involved. Surely, if everyone strictly prefers x to y,
then society should do so as well.



Independence of irrelevant alternatives is also meant to be a desirable
property. One way to think about it is to imagine that X is the set of all
conceivable social states, but some subset A S X is feasible. The social
preference function generates a preference ordering over X so that society will
choose in coherent fashion no matter what is 4. Then: Suppose 4 = {x, y}.
How society chooses between x and y—which depends on whether x — y ory

— x or both—"ought to” depend only on how individuals feel about * versus y

and not on any infeasible and therefore irrelevant alternative social state z. (A
diferent way to think about this assumption has to do with intensity of
preference, but I want to leave a discussion of that interpretation until affer
Arrow’s Theorem is stated and proved.)

Finally, having a dictatorial social preference function is, a priori, meant to
be bad. Think in particular of cases where H consists of many, many
individuals. If @ is dictatorial, with 1" as the dictator, then even in the profile (
t—p)pep Pr which y — x for everyone except B, ifx “—,x ¥, then the social
ordering produced by @ has x "~ y. That hardly seems fair or reasonable.

To be clear, if @ is dictatorial, with 1" the dictator, it isn’t necessarily the
case that social preferences = are identical to =« If for some pair x and y, the
dictator is indiffrent (that is, ifx ~,. »), then society’s preferences (as
determined by @ and the full array ofindividual preferences) can have x =~ y or y
— x orx ~y. Being a dictator means: When the dictator has a strict preference
for one social state over a second, society has that same strict preference. The
converse need not be true.

Arrow’s Theorem says: If there are three or more social states and you have
a social preference function @ that satisfies Assumption 8.1, unanimity, and IIA,
then, as unhappy as it may be, it is also dictatorial. It is sometimes called
Arrow’s Possibility Theorem, because it limits what is possible in a “good”
social preference function to dictatorship. And it is sometimes called the
Impossibility Theorem because, since dictatorship is bad, it says that it is
impossible to produce a “good” social preference function; where good means
Assumption 8.1, unanimity, IIA, and no dictators. With either name, it is the
same formal theorem.



Proposition 8.3 (Arrow’s Theorem). Suppose that X contains three or more
elements. If @ satisfies Assumption 8.1, unanimity, and IIA, then @ is
dictatorial.

Proof. To keep the statement ofthe theorem as neat as possible, the proof of the
theorem becomes a bit involved. You may wish to skip the proof on a first
reading. But nothing in this proofis hard; it just involves being very clever in
how you maneuver profiles of individual preferences. This isn’t quite the proof
originally given by Arrow, but the basic ideas all derive ffom his original
argument.

Fix a social preference function @ that satisfies Assumption 8.1, unanimity,
and TIA.

For any pair x and y, a subset H' & H is said to be decisive for x over y if,
whenever x '—, y for allh € H andy ~, x forh & H', thenx '— y. By
unanimity, H is decisive for x over y, for all x and y.

Now take in turn each (ordered) pairx and y x #y and, for this pair, a
smallest set (measured by the number of elements in the set) A, v S H that is

decisive for x overy. I’ve written a smallest set instead ofthe smallest set
because there may be ties; that is, there may be (for a particular x and y), three
diferent five-member sets of individuals that are decisive for x over y, and no
sets of individuals with four or ffwer members that is decisive. Take one ordered
pair x and y, x #y, and a smallest set / & H decisive for x over y, such that J is
smallest (measured by number of elements) among all the #,, yn as we vary x'
and y". Again, there may be many choices for x, y, and J; the point is to find an
X, ¥, and J such that for any other pair x" and »', no set with fewer members than
has J is decisive for x'over y".

I assert that J must contain a single element. (By unanimity, J must have at
least one element.) Suppose, by way of contradiction, that J has more than one
element, and let J' and J” be a partition of J such that both J' and J” each contain
at least one element. Let z be any element of X that is not x and not y. (We are
assuming that X has at least three elements.) Consider any array of individual
preferences where:

Forh € J, z ') X '), 3.

Forh € J", X ') y ' z.



Forh & J y'am) 2y x.

Since J is decisive for x over y, @ produces social preferences for this array with
x = y. Now by negative transitivity, either z =~ y or x = z. Take the two cases
in turn.

Suppose z -~ y. Take any array of preferences ‘,——';_ such that = \,:,_;} y for

et 1 ]

h' € Jand g >JE = for h' & J. The prefrences for z versus y in g_L match
those of'—;. So by IIA, ® must produce the same result for z versus y at the
argument (}—';_)hEH as it did at (=), - Since z — y, it must be that z '
y. But this means that J' is decisive for z over y, contradicting the minimality
(in size) of J. Similarly, ifx = z, IIA implies that J” will be decisive for x over
z, a contradiction. The only way out of this contradiction is ifJ is a singleton
set.

So now we have a distinguished x and y, x #y, and 1" € H such that {h*}
is decisive for x over y. The rest of the proof consists of showing that K" is, in
fact, a dictator.

First, we show that if (=), c y is any profile in which x %~ . z for arbitrary
z € X, then x '~ z. Assume for the moment that z # y, and construct a profile of
individual preferences (}-__'rh)hEH in which 7 ;:—';_F‘ i }—I , [ and, for

all other 4, y _*_-,_anndy _*_-,_Lz, and x and z are ranked under }—';_ orh#h"

precisely as they are ranked under —,. Since {h*} is decisive for x over y x '
y. By unanimity, y —'z. Hence by transitivity, x *—'z. But by IIA, since each
*-,_L ranks x and z precisely as does ~—, this implies x =~ z.

And ifz =y : Then take any element w of X that is not x and not y. The
argument just given shows that for any array of individual preferences such that x
b w and w sy, x fr & # A", x '~ w. This means that {/"} is decisive for x

over w. Now replace y with w in the preceding paragraph (remembering that z is
y) to conclude that x % z = y.

Second, we show that if (), ¢ is any profile in which z '~ y, then z



"~ y. Assume for the moment that z #x, and construct a profile of individual

preferences (}__;)he y in which = _3,_-;1‘ T =1, yand forh #h",z y

H_L x and z and y are ranked precisely as they are under —;. Since {h*} is
decisive for x over y; x ='y. By unanimity, z ="' x. By transitivity, z ="'y.
And then by IIA, z “~ y. Then, fllowing the argument of the previous
paragraph, you can take care of the case where z = x.

Third, we show that for any element w that is neitherx nory, {h*} is
decisive for w over x. To do this, let (=), be any array in which w —,« x
and x =, w for all h # h*. Construct (;——';_)hEH, which agrees with (), ey

iy S -3

concerningx versus w and which placesy as  fllows:
o }_L‘ Y wf o qand, Bra#h,y ;_Lx _*_1_;3 w. By unanimity, y
='x. By the previous paragraph, w *='y. Hence w "='x by transitivity, and w
— x by IIA.

But then, since {h*} is decisive for w over x, ifz %= . x for arbitrary z € X
in any array of individual preferences, the paragraph that begins “Second” (two
paragraphs previous to this) shows that z "= x.

Finally, suppose we have any two outcomes w and z such that w "=« z in
some array of individual preferences. Ifw = x, the paragraph that begins “First”
shows that w *— z. Ifz = x, the previous paragraph applies and we conclude that
W "= z. And ifx is neither w nor z, then construct (;-—';_)hEH so that each

—hk

P

L *;,_-h agrees with —, on w versusz and so  that

ww -\.,_L . T }_;1 Lz doesn’t matter what g_L does concerning x
versus w and z.) By the previous paragraph, w ~'x. By the paragraph that
begins “First,” x —'z. By transitivity, w ='z. By lIA, w "=~ z. Individual n*
is a dictator. pg

This result must be viewed as a disappointment, if one had hoped to find a
nice method for mapping individual preferences to social preferences. Each of the



four properties that we’ve asked of @—that it work for every possible profile of
individual preferences on social outcomes; that it deliver a complete and
transitive social ranking of outcomes; that it satisfy unanimity and IIA—seems a
reasonable request. But any @ that satisfies all four is dictatorial, as long as
there are more than two social outcomes.* And a dictatorial social preference
function is surely not where one wishes to wind up.

There is nothing wrong with the proof, so there must be something wrong
—at least in terms of the four properties—with social preference functions that
seem naturally to suggest themselves. For instance, consider majority rule. To
be precise, consider the social preference fiinction @, that is defined as follows:
For any pair x and y ffom X and for a profile of individual preferences (=), c g

say that x = y ifx =, y for halfor more of the 4. It is not difficult to show that

®p s0 defined satisfies unanimity and A Tt certainly isn’t dictatorial, at
least for the case where 4 has two or more members. So, applied to the
collection of all arrays of individual preferences, this must not be producing
complete and transitive social preferences. In fact, as defined here, — is
complete: For any pairx and y and for each %, eitherx =, y ory =, x (or
both). Therefore, half or more of the # must have x '~ y, or half or more must
have y %= x. In the first case, x '— y by majority rule; in the second case, y '—
x by majority rule.

So it must be that transitivity goes wrong. And it does: Suppose X = {x, »
z} and H = {1, 2, 3}, and consider the array of individual preferences in which x
S V=1 Z, Y =y Z ==y X, and z -3 X =—3 y. (This fimous counterexample
has a name: It is the Condorcet cycle.) Two out of three people have x ‘r—, ¥, SO
X ‘-—y Two out of three have y ‘-_h z, s0 y = z. Hence, for transitivity, x ‘= z
must hold. But only one out of the three individuals has x =h % this doesn’t
hold.

This is only one way to implement the general principle of majority rule;
other variants require supermajorities or use weighted voting. In most of these
variations, the relationship between x and y socially depends (only) on how
individuals rank x and y; IIA holds by design. And most sensible definitions



will give you unanimity; it is hard to think of an implementation of majority
rule that doesn’t have that, ifx =, y for every # € H, then society strictly
prefers x to y. Finally, most sensible definitions will not be dictatorial—
however you implement majority rule, if one person has x *—, y and everyone

else has y " x, it is hard to produce a social strict preference for x over .6 So,

per Arrow’s Theorem, implementations of majority rule and its variants, when
applied to a domain of all profiles of individual preferences, fil to produce
complete or transitive social preferences. In most cases, the Condorcet example
from the previous paragraph tells the unhappy tale.

A second possible social preference function, ofien used in athletic contexts
to find consensus rankings of teams, is the Borda rule. Suppose there are N
social states. For each individual # € H, convert her preferences = in a given

profile of individual preferences to a cardinal utility function as Pllows: Her
highest ranked social state gets utility u,(x) = N. Second highest gets u,(x') = N

— 1. And so forth, where ties get the average of their ranks. 7 And then, for each
x, compute U(x) = Y, c i u;(x), and let — be the preference ordering given by
U. This clearly produces complete and transitive social preferences, since it
produces a numerical ranking. And it clearly satisfies unanimity: If everyone
ranks Stanford’s football team as strictly better than USC’s, then Stanford will
have a higher ranking in the poll. It clearly fails to be dictatorial, if 7 has more
than one element. So, per Arrow’s Theorem, it must violate IIA. And so it
does: Suppose H = {1, 2} and X = {a, b, ¢ d}. According to this social
preference function:

ifar=1bre-ydand b=y c-;a - d, thenb > q;

andif a = c-;d = band b -} ¢ =y a -5 d, thena ="b.

The rankings ofa versus b are the same in the two profiles of individual
preferences, but changing the positions in 1’s rankings of ¢ and d relative to a



and b changes the social ranking of @ and b.

8.2. What Do We Give Up?

Arrow’s Theorem is, without question, a disappointing result, but it does point
the way forward for further analysis. Assume we are still interested in finding a
“nice” social preference function. Assume that a dictatorial social preference
function, for more than three social states, is not nice. Then Arrow’s Theorem
tells us that our definition of “nice” will have to do without one of the
following: The domain of @ consists of every H -tuple of preferences. The range
is the space of complete and transitive preference orders on X. Unanimity is
satisfied. IIA is satisfied. One of these, and perhaps more than one, has to go.

No one seems very interested in giving up unanimity. If every member of
society thinks x is strictly better than y, it is hard to imagine that society should
conclude otherwise, for any social preference function that is “nice.”

One way forward, then, is to give up on the notion that the domain of @
consists of every H -tuple of preferences on X. One idea here is that X has some
geometric structure that precludes certain preferences. The paramount example
here concerns so-called single-peaked preferences. One assumes that X is one-
dimensional; to be concrete, assume that X & R, the real line.

Definition 8.4. For X S R, a complete and transitive preference relation ‘—

on X is said to be single-peaked if, for all x, y, and z such that x>y > z, cither
V= X 01y = z (or both).

Single-peaked preferences are particularly interesting to political scientists.
Think of social states being arrayed on a single lefi-wing-to-right-wing
dimension. Each individual has her ideal point on this one-dimensional
political spectrum, with preference falling off as the social state moves further
and further (in one direction or the other) fiom the individual’s ideal social state.

Proposition 8.5. Suppose X S R, and suppose H has an odd number of
elements. The majority-rule social preference function given last section, @ yp,
produces complete and transitive social preferences for any profile of
individual preferences for which each ‘=, is single-peaked and anti-symmetric



(that is, if X =y y =, X, then x = y).

The proofis leff as an exercise. (It is Problem 8.3, and the solution is provided
for you in the Student’s Guide.) To interpret this: If we define a social preference
finction @ as majority rule, in that for any profile of individual preferences (‘—

Whem @ produces the majority-rule comparison rule as defined previousl;

then, in general, @ satisfies unanimity and ITA, but it doesn’t produce complete
and transitive social preferences. (See the discussion last section.) But if X is
one-dimensional and we restrict individual prefrences in our profiles to be
single-peaked and antisymmetric, then @ does produce complete and transitive
preferences. (Adding in the assumption that each individual preference relation is
anti-symmetric is an analytical convenience. Note that this was true in the
example given last section; the real bite here is the assumption that preferences
are single-peaked.) If we are allowed to restrict the domain of @ (in this case to
profiles of single-peaked and anti-symmetric preferences, where X has the
geometric structure needed for this to make sense), we can get everything else
desired while avoiding dictatorship.

The term “majority rule” here needs to be carefully interpreted. We use
majority rule to make pairwise comparisons, and then use those pairwise
comparisons to choose ffom a feasible subset ofX. It is relatively easy to
construct an example in which there are three options, x, y, and z, for which (a)
pairwise comparisons lead to x “— y '~ z and yet (b) if we asked each / to vote
for its favorite option of the three, option y would command a plurality of the
vote. Most textbooks on the theory of voting systems will discuss the case of
single-peaked preferences in detail.

This is only one example of what might be done by restricting the domain
of the social preference function. For further results, see Caplin and Nalebufl
(1988).

Alternatively, one might give up on the independence of irrelevant
alternatives. We already provided one rationale for IIA, but here is a second: IIA
is desirable because, knowing only each individual’s ordinal ranking of social
states, we have no way to make interpersonal comparisons of utility or utility
diferences. If we know, say, that half'the population prefers x to y and the other
halfprefers y to x, we have no particular basis for preferring one or the other. But



if we know that, for the people who prefer x toy, the diference is really
important to them, while for those who prefer y to x, they are near to indifferent,
then we might choosex. Since we have formulated our knowledge about
individual preferences as ordinal preference relations, we have no direct
knowledge about intensity of preferences. But, within the context of ordinally
expressed preferences, if half the population puts y in, say, third place overall
and x in fourth place, while the other half puts x in third place and y in fiffeenth
place—something that depends on how x and y compare to other social states—
it might be thought legitimate to infer that the difference between x and y for the
second group is greater and, on that basis, come to the social conclusion that x
is preferable to y.

That, in essence, is what the Borda rule is doing. It is converting the
ordinal ranking of an individual into cardinal measures of “worth” and then
adding up those cardinal measures to get a social ranking. This means a
violation of IIA, of course, but the violation is done to facilitate interpersonal
comparisons.

The Borda rule, however, quite ad hoc. Why assign cardinal values N, N —
1, N—2, ..., 1? Why not assign values N2, N - 1)2, ..., 4, 17 Why not use
the pyy py-1> ---» 2, where p, is the nth prime? Or use Fibonacci numbers?
Once you are in the business of assigning ad hoc cardinal values to “positions”
in an order, a lot of assignments are possible, all of them equally meaningful (or
meaningless, as you prefer). And, of course, it makes a difference to the final
social outcome which you use.

If we want to be in the business of making interpersonal comparisons of
utilities and utility diferences, we should probably look for data that provide
meaningful cardinal utilities directly. Introducing lotteries over social states
might be a means for doing this; for a treatment along these lines, see Kaneko
and Nakamura (1979). Or imagine that we are lucky enough to have utility
functions that are quasi-linear in a transfrable store of value (money). Then we
can make interpersonal comparisons of utility diferences by measuring everying
in money and adding up dollar values. Indeed, in this case, we could imagine
ameliorating disputes over which social state to implement by engaging in
compensation; that is, in transfers fom those who benefit ffom the selected
social state to those who suffer Arrow (1951a) provides a discussion of
compensation. The bottom line here is: The formulation of the problem of



social choice with which we began, and in particular the formulation of
individual preferences ordinally, makes interpersonal comparisons of preferences
and preference differences suspect. Giving up on ITA would seem to mean
allowing for interpersonal comparisons, and that in turmn seems best
accomplished if you assume (as analyst) that you have access to data that permit
meaningful interpersonal comparisons. With such data, Arrow’s Theorem is not
the end of the story of social choice.

8.3. Efficiency

But without more data (and if we are unwilling to make interpersonal
comparisons based on individual ordinal rankings), if we won’t give up
unanimity or restrict the possible profiles of individual preferences, we are left
with setting our sights lower: Instead of producing a complete and transitive
social ordering of X, we look for something less.

This is the traditional stance of economics and economists: x is comparable
to y if and only if x is a Pareto improvement on y, in which case x is judged
better than y. Within any subset A of X, we look for the Pareto-efficient (often
just “the efficient”) elements of A. And (as economists) we don't seriously try
to judge the relative merits of two different efficient outcomes. Let me define
the new terms:

The setting is more or less as before, although X need not be a finite set. We
continue to suppose that the set of individuals, H, is finite, and that each
individual has complete and transitive preferences —; on X, fiom which strict

preferences -~/ and indifference ~, are derived.

Definition 8.6. The social state (or outcome) x is Pareto superior to y (or
Pareto dominates y), if x ‘=, y for every h in H and x =~ y for at least one h

€ H. (In this case, we also say that y is Pareto dominated by or is Pareto
inferior to x.) The social state x is strictly Pareto superior to y (or strictly
Pareto dominates y) if x =, y for all h. For a subset A of X and a point x €
A, x is Pareto efficient (or just efficient) within A if there is noy € A that
Pareto dominates x. The set of Pareto efficient points within A is called the
Pareto firontier of A.



Fixing the profile of individual preferences, Pareto superiority and strict Pareto
superiority create binary relations among the social states: Write x ==, y ifx is

Pareto superior to y, and write x =~ y ifx is strictly Pareto superior to y. With
our maintained assumption that each '—, is complete and transitive, it is simple

to establish the ©llowing result:

Proposition 8.7. Both = and ~i~. are transitive and asymmetric. If x =,

Y, then x ==, y.

But, in general, =%, (and, therefore, ~i-.) is not complete. As for the existence of
Pareto-efficient points within a set 4 < X, we have:

Proposition 8.8. A given set A S X has a nonempty Pareto frontier (that is,
there exist Pareto efficient points within A) if either (a) A is finite or (b) (if X
is a subset of R" or otherwise has a suitable topological structure) A is
compact and each =~ is continuous.

Proof. For notational convenience, I’1l assume that the individuals (members of
H) are denoted by 1, 2, ..., N, for some finite N. In either case (a) or (b), let 4,

be the set of elements of 4 that are '—-best. (That is, 4, consists of all the

points that # = 1 likes best among the points in 4.) Results from Chapter 1
show that 4, is nonempty. In case (a), it is obvious that 4, is finite. In case (b),
I assert that 4; is compact: Boundedness of4; is immediate because 4; is a
subset of the bounded 4. And 4 is closed: Let x,, be a sequence of points in 4,
converging to x. Let y be any other point in 4; then since x, is in 4y, x,, = y.
But then, by continuity, x = y. Since y is arbitrary in 4, x is = best in A,
and hence x € 4, showingﬁlat A, is closed. -

Now let 4, be the subset of 4; consisting of all the =, -best points out of
A4,. By the arguments just given, 4, is nonempty anz in case (b), 4, is
compact. Proceed in this fashion for all # € H; ending with 4. The argument
shows that 4, is nonempty; I assert that any x € A4 is Pareto efficient in 4.



Suppose, to the contrary, that y € 4 is Pareto superior to x. Then y— x, and
sincex € 4, S Ay, y must also be in 4;. Proceeding along these ling, we find
that y € A4,, then 45, and so forth. But for some lowest index A, y =— x (since
y Pareto dominates x, we have to hit a strict preference somewhere down the
line). Sincey € 4,_;, x € 4,_;, and x is among the '—; -best elements of
Aj,_1, we know that x —; y, a contradiction to y ‘=, x No such y can exist,
everyx € Ay is Pareto efficient, and (therefore) the Parcto frontier of4 is
nonempty. g

(This is a good place to engage your intuition. We just showed that 4 is a
subset of the Pareto frontier of 4. 4, was constructed by taking the individuals
in H in a particular order; presumably, if we permute the order, we’ll wind up
with a diferent subset of the Pareto fontier. So suppose we take all the possible
permutations of the individuals and, for each permutation, construct a set
analogous to 4. Does the union of all these 4, -like sets give the entire Pareto

frontier of A? No, it does not. In a few paragraphs, we’ll see a picture that shows
this clearly. But before we get to that picture, can you see what is going on
here?)

8.4. Identifying the Pareto Frontier: Utility Imputations and Bergsonian
Social Utility Functionals

In specific applications, although we (as economists) may be unwilling to select
among Pareto-efficient outcomes, we ofien do want to find (or otherwise
characterize) all the efficient outcomes. A methodology for doing this, in some
applications, employs so-called utility imputations and Bergsonian social
utility functionals.

Suppose that the profile of individual preferences is given by a collection of
utility functions u;, : X — R for h € H that represent the individual’s preference

relations =;. In this case, we can map each social state x into the vector of

utilities it provides for each individual in turn; formally, let u : X — R¥ be
defined by (u(x));, := u;,(x). The vector u(x) is called the utility imputation for the

social state x; the range ofu is the set of utility imputations; if we have a subset



A S X of feasible social states, the set u(4) = {u(x); x € A} is called the set of
feasible utility imputations, and so forth. In these terms, the state x is Pareto
superior to y if and only ifu(x) >u(y) and u(x) #u(y); the state x is Pareto
efficient in 4 & X ifand only ifthere isnov € R such that v = u(y) for some y
€ A and v >u(x), v #u(x). Graphically, when H has two members (so that
utility imputations are points in the plane), the Pareto frontier of4 is the set of
points x € A such that there is no other point in u(4) to the northeast ofu(x);
see Figure 8.1.
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Figure 8.1. Pareto eficiency. Imagine that there are two individuals (H has
two elements) and six social states, x;, ... , xs. For each social state x;, we

plot the utility imputation of the state, the point u(x;) = (u(x;), uy(x,)).
From the picture, we see that x; is Pareto dominated by x,, by x3, and xs;
x, is Pareto dominated by x3, x5, and xg; and—since u;(x3) > u;(x,) and



uy(x3) = Uy(x,)—x, is Pareto dominated by x3. The states x5, x5, and x¢
are Pareto efficient, and as a set they constitute the Pareto frontier.

Needless to say, the set of utility imputations in any specific context
depends on the specific utility finctions u, chosen to represent the preferences of
the individuals.

(Now go back to the proof of Proposition 8.8. Suppose that H has two
elements, so there are two orders in which we can take the individuals. Which
points in the Pareto frontier of X are selected by the procedure in the proof, if we
take first one order and then the other? Can you identify the results for the
example of Figure 8.1, if we assume that 4 = X?)

In this context, where individual preferences over social states X are given by
some specification of individual utility functions u;, and where the vector

fanction u is defined as above, we have the fllowing obvious result:

Proposition 8.9.  Suppose that W : R — R is strictly increasing. If x is a
solution to the problem

Maximize W o u(x), subjecttor = X.
then x is Pareto efficient.

Proof. We prove the contrapositive statement: Ifx is not Pareto efficient, some y
€ X is Pareto superior to it. But then u(y) > u(x) and u(y) # u(x). If W is strictly
increasing, then W (u(v)) > W (u(x)), sox would not be a solution to the
problem of maximizing W i~ u over X. g

What about the converse? That is, ifx is Pareto efficient, is there some
strictly increasing /¥ such that x solves the problem of maximizing W - u?
Suppose the answer is yes. Then, at least in theory, we have a machine for
finding the Pareto frontier of any X (or, more generally, ofany 4 & X), namely:
Solve the problem of maximizing W i u for every strictly increasing finction W
:R" - R. And, in fact, the answer is yes. (See Problem 8.5, which is solved
for you in the Student’s Guide.)



But there are a lot of strictly increasing functions W : R¥ — R—some of
them extremely ill-behaved—and in finding every Pareto-efficient point in a
given X, you may need some of the ill-behaved ones: For instance, while you
can limit yourselfto continuous and strictly increasing W if X is a finite set, if X
is infinite, it may take a discontinuous function ¥ to get at a particular Pareto-
efficient x. And even if we could limit attention to continuous and strictly
increasing W—indeed, even if we could limit ourselves to W that are
diferentiable—there are a lot of such functions, and solving the problem of
maximizing W i u for all of them is not a very (excuse the adjective) efficient
machine.

The following proposition comes to our rescue.

Proposition 8.10. Suppose that the set {v € R : v <u(x) for some x € X}

is convex. Then every Pareto-efficient point ¥ € X is the solution to the
problem

Maximize E apun(x), subjecttor € X,
hcH
for some set of nonnegative weights (), yy» not all zero. Moreover, the set {v

eRM.v< u(x) for some x € X} is convex if X is convex and if each uy, is a

concave function (from X to R).

This proposition amalgamates two different results, and it may help to unpack
them.

Taking the second halffirst, it provides conditions under which, in a specific
application, the set of utility “imputations” is convex. The term utility
imputations is put in scare quotes because, in fact, we are really concerned with
vectors of utility levels that lie at or below the set of utility imputations; that is,
we look at all vectors of utility levels v € R such that v is less or equal to
u(x), for some x € X, the set of social states. Those conditions are: (1) The set
of social states is a convex set. And (2) the individual utility functions are
concave functions. This requires that the set of social states X have a geometric



structure that allows us to talk about convexity: You can think of X being the
subset of some finite-dimensional Euclidean space RK, so that the definition of
concavity of each u, is just the definition given in Appendix 3. But for readers

conversant with more general notions of convexity ofa set (within a general
linear space) and concavity of a real-valued function defined on such a set, it will
be obvious from the proofthat this part of the result is quite general.

As for the first part, if the set {v € R v< u(x) for some x € X} is convex
—in particular, if the conditions of the second half of the proposition hold—
then the proposition tells us that we can identify the Pareto frontier by
maximizing simple weighted averages of the utility finctions of the individuals.
Or, to be precise, it almost tells us that: It says that every Pareto-efficient point
is the solution to a maximization problem for this sort of weighted average of
utilities. And Proposition 8.9 tells us that ifthe weights are strictly positive (so
this objective function is a strictly increasing function of the individual utilities)
then every solution is Pareto efficient. But we have a bit of a middle ground left
to discuss: To find all the Pareto-efficient points, we need to consider cases
where some of the weights @, are zero. But then solutions of the maximization

problem are not guaranteed to be Pareto efficient. We’ll discuss this middle
ground after proving the proposition.

In the previous paragraph, the phrase weighted averages of the utility
functions sounds as if we are imposing the condition that the weights sum to 1.
In fact, we could impose that condition on the weights without changing the
proposition: maximizing ), au,(x) gives the same solutions as does
maximizing », Aaju,(x) for any strictly positive 4. So, for general weights
(ap)pepy ifwelet A = 1/3, o, then we have weights that sum to 1. (Since not
all the weights are zero, the sum is strictly positive.) As a practical matter,
when we go to apply the proposition, what is important is that all relative
weightings of the various individuals are considered; having the weights sum to
1 works or, in a problem where /7 is doubleton, setting one oy, to 1 and letting
the other weight vary between 0 and oo will work (except for the weighting
where the first individual gets 0 weight).

You may wonder why we stated the proposition in this two-stage manner. It
would be cleaner, perhaps, to say “Suppose X is convex and all the u, are



concave. Then...” and give the conclusion of the first half But for the
conclusion of'the first part to follow, convexity of the set {v € R v< u(x)} is
what is needed. Convexity of X and concavity of the u), are sufficient for

convexity of this set, and in almost every application of which I am aware, those
are the sufficient conditions employed. But I don’t want to preclude an
application where, on other grounds, you know that the critical set is convex.

Finally (before we get to the proof), the proposition is stated in terms of the
Pareto frontier of the set of all social states X. In many applications, we are
concerned with the Pareto frontier of a subset A & X. The proposition works
just as well for such applications; the first part ©llows if the set {v € R : v <
u(x) forx € A} is convex, and convexity ofthis set is guaranteed if4 is convex
and the u, are concave.

Proof of the second part of Proposition 8.10. We prove the second and easier
part of the proposition first. Suppose that v <u(x) forx € X and v/ <u(x’) for x'
€ X. We must show, for # € [0, 1], that v + (1 — f)V' <u(x") for some x”" €
X. The obvious candidate (and one that works) is x” = fx + (1 — fx". This is in
X because X is assumed to be a convex set. And since each u,, is concave,

up(2") = up (B +(1=F)2") 2 Bup(@)+(1-Aup(x’) = fop+(1- B,

This is true for each 7 € H, so the vector u(x") is greater than or equal to the
vector fv + (1 — p)v', which is what we needed to show.

Proof of the first part of Proposition 8.10. The first part isn’t hard to prove
either, once you have the right mathematical hammer in your toolkit. That
hammer is the Separating-Hyperplane Theorem, which is Proposition A3.10.
This is, I believe, the first application in the text of the Separating-Hyperplane
Theorem; it is far fom the last, as I believe it is safe to say that no
mathematical hammer gets more widespread use in the remainder of this book.$

Suppose A is Pareto efficient. This implies that the sets {v € R v < u(x)
for somex € X} and {v € R :v >u(®)} are disjoint: Ifv were in the
intersection of these sets, then u(x”) < v < u(y) for some y € X, and y is Pareto
superior to 20, contradicting the assumption that A% is Pareto efficient. But the
set {v € R :v< u(x) for somex € X} is convex by assumption, and {v €



R v > u(®)} is easily shown to be convex. Hence there exists a nonzero
vector § and scalar y that separates the two sets: That is, - v<y forall v € {v
€ R v<u(x) for somex € X}, and f - v>y forall v> u(xo)‘ I assert that S >
0; if some coefficient of 5, say /3, is strictly less than zero, then taking v to be
uh/(xo) +1Prh'#handv, = uh(xo) + M for large M gives a vector v > u(x)
that, for M approaching infinity, has f - v approaching —co; hence eventually less
than y. That cannot be. And, I assert, 8 - &) = y : Take V' = u(®) + (1/n, 1/n,
..., 1/n), which is > u(xo). Therefore, - V' > y. But as n approaches infinity,
- V" approaches £ - u(x®). Hence g u(x®) > 7. On the other hand, u(¥) is in the
set {v € R : v <u(x) for some x € X}; hence - u(x®) <7.

But this means that 8 - u(®) =y > g - u(y) forall y € X, since u(y) € {v €
R v <u(x) for somex € X}. Let the weights ay, be the components of the

vector f3, and you have the result. g

A picture of this proposition will help readers who are new to separating hyper-
planes understand what is going on and help to shed light on the discussion we
began about the middle ground caused by zero weights. The figure depicts a
case where H has two members, so utility imputations lie in the plane. In
Figure 8.2a, a set of utility imputations u(X) = {v € R?: v=u(x) for some x €
X} is given. This set is not drawn as being convex, but it is “convex to the
northeast”; this is not atypical of the situation where X is convex and the utility
functions are concave (see Problem 8.6). But when we expand the set by
including everything less or equal to a utility imputation—that is, when we
look at {v € R :v< u(x) for some x € X}—then we get a convex set (when X
is convex and the u;, are concave), as depicted in panel b. Now take any Pareto-

efficient point x° and the corresponding utility imputation #(x), and look at all

points in the space of utility imputations that are strictly greater than u(®®). See
panel c of Figure 8.2, where the dashed lines indicate that the second set is open

along its boundaries. Precisely because x” is Pareto efficient—so that u(x°) lies
along the northeast border of the set of utility imputations, the two sets depicted
are disjoint. The two sets are convex, the set {v € R :v< u(x) for some x €
X} by assumption and the set {v € R v > u(d)} by a simple argument, so



according to the Separating-Hyperplane Theorem, a hyperplane separates them.
This is depicted by the line that separates the two sets in panel ¢, {v:f v =
y}, where the vector f8 is the normal to the line (see panel c) and the scalar y
gives the “height” of the line (in general, the hyperplane) perpendicular to this
normal. You can imagine tracing out all of the Pareto fiontier of X (or, more
precisely, their utility imputations) by changing the slope of the hyperplane; as
you make the hyperplane “flatter”—by making f more nearly vertical, which
means more relative weight on the second component—you get points more to
the north; as the hyperplane becomes more nearly vertical—by making f more
nearly horizontal, which means more relative weight on the utility of the first
individual—you get points more to the east.
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Figure 8.2. Proposition 8.10 in pictures. See the text for explanation.

Panel d of Figure 8.2 shows why we need the second part of Proposition
8.10. Ifthe set {v € Ry < u(x) for somex € X} is not convex, then there
are Pareto-efficient points, with utility imputations such as u(x’) as shown, that
can’t be found as the solutions to a maximization problem where the objective
function simply weights the individuals’ utilities and adds. This point can be
picked out by a fancier strictly increasing function of the utilities, but the
proposition (and method it presents) is useful precisely because we can identify
the entire Pareto frontier with a relatively simple collection of such functions.

These objective functions have a name: They are known as the Bergsonian
social utility functionals. Definitions vary ffom source to source, so you should
be careful when consulting a different book, but we’ll define things as follows: A
social utility functional is a fanction W fiom RY to R that maps each utility
imputation vector u(x) into an overall level of “ social utility” W(u(x)).” You can
imagine, if you’d like, that a given social utility functional describes how a
social planner or dictator decides on a social state: She learns what utility each
individual ascribes to each possible social state x, then uses W to find the
“social utility” of each x, and then (presumably) chooses whichever social state
is feasible and maximizes social utility.

In most contexts, and following in the general spirit of the unanimity
assumption, attention is restricted to social welfare functionals that are
increasing, at least weakly; the adjective benevolent is sometimes used to
describe this. And Bergsonian social welfare functionals (affer the public choice
economist Abram Bergson) are those that are simple weighted sums of the
individuals’ utilities.

Note that in Proposition 8.10, some (but not all) of the weights a;, are
allowed to be zero. If this happens, if some of the weights are zero, the
functional is not strictly increasing, and maximizing the social utility finctional
may lead to social states that are not Pareto efficient. Figure 8.3 illustrates why
allowing zero weights may be necessary. As before, this is for the case where H
has two members, and we are drawing sets of utility imputations. Panel a
depicts a set of utility imputations for some set X, and panel b all points that are
less than or equal to the set of these utility imputations. So that the first part of
Proposition 8.10 can be enlisted, the set of utility imputations is convex to the



northeast, so the set in panel b is convex. (In fact, I’ve drawn it so that the set
of utility imputations is convex, but the essential fature is that it is convex to
the northeast.) Focus attention on the utility imputations #(x”) and u(x"). I've
drawn the picture so that 10 is Pareto efficient and so that x' is not: X0 is strictly
preferred by the first individual to x!, while the second individual is indiferent
between them (gives her the same utility). But I’ve also drawn the picture so
that the Pareto ffontier (in the space of utility imputations) approaches u(®) in
an “assymptotically flat” manner. (Think, for instance, ofa Pareto frontier in the
space of utility imputations that describes a quarter circle.)

ul) () ulr) ul)

utility of second individual
utility of second individual

utllty of first individual utlity of first indivicual

() The set of utility imputations  (b) Adding points less than
feasible ufility imputations

Figure 8.3. The need for and consequences of zero weights in Proposition



8.10. To pick out the Pareto-efficient point x* with a Bergsonian social
utility functional, it is necessary to put zero weight on the utility of the
first individual. But by putting zero weight on the utility of the first
individual, we introduce Pareto-inefficient points such as x' as solutions
to the problem, Maximize the Bergsonian social utility functional.

To separate the set in panel b fiom the set of utility imputations strictly
greater than u(xo), we need a hyperplane that is horizontal, which means that the
normal to the hyperplane is vertical, putting all its weight on the second
individual. If we maximize this weighting of the individual utilities over X, x°
emerges as an answer, but so does x'. We can’t produce +0 with any other
weights (in a simple linear weighting of utilities); if any strictly positive weight
is put on the utility ofthe first individual, maximizing will push u down and to
the right along the Pareto frontier But giving the first individual zero weight
gives answers that are not Pareto efficient.

There is, unhappily, nothing to be done about this. When you go to apply
Proposition 8.10, either you can use only strictly positive weighting vectors,
and potentially miss some of the Pareto-efficient social states; or you can use
zero weights and be sure to find all the Pareto-efficient social states, but run the
risk of finding some other, inefficient states besides.

After what we said about mainstream economics being unwilling to make
interpersonal comparisons of utility, the direction we’ve taken in this section
may be puzzling. When we maximize a Bergsonian social utility functional, we
seem to be doing precisely what we said we would not do, and with a great deal
of exactness: if we are maximizing with weights where o, = 20, we are

apparently saying /’s utility is worth twice the utility of 2" We said we would
eschew the use of cardinal representations of utility; now we have a section that
is devoted entirely to specific numerical representations. What is going on?

The answer is, We are developing an analytically convenient way to find
Pareto-efficient social states, at least for some applications, and we are moreover
giving conditions under which this “machine” is guaranteed to find all the
Pareto-efficient social states. If we went on to choose among the Pareto-efficient
states that we identify—say, by giving special credit to the equal-weighting



social utility finctional, or by any other means—then we’d be breaking with
what we said earlier But unless and until we say that one efficient point is, on
some grounds, better than another—as long as we are using this machine only
to characterize the Pareto frontier—we are keeping to the notion that, as
economists, efficiency is as far as we are willing to go.

8.5. Syndicate Theory and Efficient Risk Sharing: Applying Proposition
8.10

Proposition 8.10 is typically employed in the analysis of specific contexts, to
find and/or characterize efficient arrangements in those contexts. To provide a
model for how to attack such problems, in this section we characterize efficient
risk sharing, following the treatment given by Wilson (1968) under the title
syndicate theory.

A finite collection H ofindividuals has formed a syndicate that will share the
proceeds ffom various risky ventures. To keep matters relatively simple, we
imagine that there is a finite set S of states of nature, with generic element s, and
the syndicate collectively holds a finite collection J of risky ventures or
gambles, wherezjx is the amount that venture j returns in state s. A sharing rule

for the syndicate is an element (y,,) € RS such that, for each state s, Yhen
Vhs < 2jeg Zjo with the interpretation that under the sharing rule (y,), ;s is

individual A’s share of the total in state s.'% You might imagine, for instance,
that each individual /2 starts with a risky venture and that members of the
syndicate pool these ventures and then share in the outcomes—this would mean
that j € J corresponds in one-to-one fashion to # € H. You might imagine
further that each individual’s venture involves only losses (that is, each Zi < 0),
in which case the story suggests that the individuals are engaged in a mutual
insurance scheme. Alternatively, the index set of ventures might bear no
particular relationship to the list of individuals. Regardless of how these different
ventures arise, what is important to the analysis to follow is that the returns
from the different ventures are pooled and then shared out among the members of
the syndicate. A social state x is then one of these sharing rules (y,), and we

seek to answer the question: Which are the Pareto-efficient sharing rules?
Of course, to answer this, we need to know the preferences of the individuals



concerning the sharing rules. Assume that each individual / is an expected-
utility maximizer, with (cardinal, or von Neumann—-Morgenstern) utility
function U, : R — R, and with (subjective) probability assessment z;(s) that

state s occurs. Assume that each individual 2 owns a private endowment
amounting to e, in state s, which is not part of the pooled risky ventures but

which represents resources that 4 can call upon to facilitate the risk sharing.
Then the preferences of individual /4 are given by her subjective expected utility;
that is, individual / evaluates sharing rule (y,,) as having the utility

Z Ta(S)Uk (Yns + €ns)-

We assume that the utility finctions U, are continuous, strictly increasing, and
concave. To avoid pathologies, we assume that 7;(s) > 0 for all / and s; that is,
each individual subjectively assesses positive probability for each state.

We also need to know whether there are any constraints that apply to
feasible sharing rules. One constraint, the adding-up constraint, has already been

mentioned: 3, vy, <3 z;; for each s. 11 But beyond this, three other constraints

seem worthy of discussion:

* Y20 Brall hand s. Of course, for this to work, we’ll need to have 3, Z
> 0 for each s, so if the story is one of mutual insurance, this constraint
won’t work. This constraint says that the sharing rule never asks an
individual to contribute out of her private resouces, to make up the shares of
others, beyond what is provided in the shared ventures.

* Vs T €y =0 forall 2 and s. If we assume that each ey, is nonnegative, this

relaxes the previous constraint: It allows for negative values in the sharing
rule, but not so negative that the individual ends up, net of her own
endowment, with a negative outcome. Depending on the domain of the
utility function Uj, something like this may be necessary.

2T DU T eps) = 2 m(s)U(ey,,) for each h. This constraint, which



would be implied by the first constraint (since each U, is increasing) but
which is neither implied by nor implies the second, says that the ex ante
position of each individual affer sharing rules are assigned leaves the
individual at least as well off as if the individual gets nothing flom the
sharing rule. In the insurance interpretation, this would not be natural to
assume: The individual /4 starts with some lottery with bad outcomes, so to
say that her expected utility post-sharing should be at least as large as her
expected utility if she faced no risk of this sort at all is ... optimistic.
Indeed, if the individuals’ outside endowments, given by the e, are all
constant, and if the shared gambles zj are all nonpositive (and not

identically zero), this constraint would make the problem infasible.

We’ll have more to say about these constraints momentarily. But first we have
the Pllowing result:

Proposition 8.11. (Recall that we assume that each U, is concave and strictly

increasing.) No matter which subset of the three constraints above are
imposed, the set of feasible sharing rules X is convex, and the individual utility
functions are all concave.'> Tl herefore, the first part of Proposition 8.10
applies to this problem. 13

Details of the proof are left to you to write out. (It is assigned as Problem 8.7,
and the solution is provided in the Student’s Guide.) To show the concavity of
the function ¥ 7,(s)U, (v, + €, in the sharing rule (y,,), you may wish to
enlist Proposition A3.17b.

Therefore, according to the proposition, if we want to find the family of
Pareto-efficient sharing rules under some set of constraints, we should solve the
problems

Maximize Z i Z Th(8) R (Ynhs + €Rs)
h

2



where the maximization is over the variables (), subject to the adding-up
constraints ), yj,; < % z;; for each s, plus any other of the constraints we wish

to include. As we solve this problem, parametrically varying the weights
(@), 7 (Where the weights must be nonnegative), we are sure to pick off every

Pareto-efficient sharing rule, although we may find solutions that are not Pareto
efficient, if any of the weights have value 0. (In fact, for this specific problem,
this won’t happen. The explanation fllows in a bit, but you may wish to see il
you can figure out the reason on your own.)

The analysis is a bit clearer if we make a change of variables. Rather than
work in terms of the sharing rules (y), it is more convenient to work in terms
of the net-of-endowment positions of the individuals, the vector (x,,) € RA*S,
where x;, =y + €. Making this substitution, and letting W = 3, ¢, + 3
Zj;» the problem can be restated as

Maximize Zflh Z Th(8)Up(xpe)|  Subject to z 1y, < W, foreachs,
h h

4

plus any additional constraints we care to impose. Please note that we have used
the simple symbol x to denote a social state, which is a sharing rule. So, with
this change of variables, we are thinking ofx = (x;,) as a social state or,

equivalently, a net-ofendowments sharing rule. Also, for a given net-of
endowment sharing rule x = (x;,(), we write u,,(x) for Y 7, (s)U,(x,), and u(x) for
the vector of utility imputations (u;(s)), < s

What about the constraints? In terms of the x;,; variables, they are



The = €, forall h and s,
The = 0 forall h and s, and

Y. TR Un(zhe) = Y, Th(8)Un(ens) for each hi.

I want to argue that the third type of constraint can be imposed post-analysis, so
needn’t be considered in the analysis, while the first is “uneconomical” in
spirit; only the second sort of constraint should concern us.

To take up the third sort of constraint first: Each Pareto-efficient sharing rule
x = (v, and its equivalent net-ofendowment vector (x,,) gives a utility

imputation u(x); this third type of constraint simply requires that the vector u(x)
satisfy u(x) > W, where V0 € RY is the vector whose component is voh =2
7 (s)U(e,). The constraint takes the larger Pareto frontier (without it) and

restricts attention to a subset, without changing the shape, structure, or character
of social states in that subset. We can worry about whether a particular Pareto-
efficient allocation gives each individual enough utility afier we find the
allocation; if/ is not getting enough expected utility when we maximize for
some weighting vector (a,), c ;;, We can improve her situation by increasing her

relative weight.

As for the first sort of constraint, suppose some sharing rule x is Pareto
efficient with this constraint but not when the constraint is relaxed. That is,
there is some sharing rule x’ that Pareto dominates x, but that is ruled out
because it violates this constraint. This means that x’ is ruled out because it
calls for some individual /4 to take resources provided by her endowment and, in
some state, transfer them to another member of the syndicate. But since x’ Pareto
dominates x, this individual is just as well off in terms of overall utility, as at
x; presumably, the individual is compensated (and perhaps more) by a larger
transfer (relative to what she gets under x) ffom the syndicate members in some
other state(s). And someone is better off at x’ than at x. In the context of this
problem, we can find the individual who is strictly better off and, in at least one
state, take a bit away ffom him and distribute that to every other individual in a
way that makes everyone strictly better off than atx; that is, ifx’ Pareto



dominates x, then there is some x' that strictly Pareto dominates x. Now /4 is
strictly better off than at x. Will 4 really object to drawing upon her private
endowment in some states, if by doing so she winds up in a strictly better
position overall? In fact, there may be good economic reasons for this, but they
lie beyond the story we are telling here;'* our objective for now is to find
efficient sharing rules, where we suppose we (and everyone) has all the
information that makes up this problem, in which case it is difficult to justify
the first sort of constraint.

To be clear, this argument completely blurs any distinction between the set
ofjointly owned ventures, given by (zjs), and the private endowments (e;,,). The
syndicate may have formed to share in the risk of those jointly owned ventures.
But once we start looking for efficient sharing rules, where Pareto efficiency
inevitably involves the private endowments, since those endowments affect
preferences, risk sharing of the private endowments enters the picture. Put it this
way: Suppose that the jointly owned ventures didn’t really exist, in the sense
that z;; = 0. If members of the syndicate H can engage in mutually beneficial risk
sharing of their private endowments, then getting rid of constraints of the first
type will have them do so (in Pareto-efficient sharing rules). The argument
given in the previous paragraph essentially says (in this context): “If it makes
everyone better off why not?”

In comparison, constraints of the second type could be quite reasonable.
What does it mean, that x,; < 0 in some state s? Where does / obtain the

resources to make good on this net debt? What if U, is undefined for negative
arguments?

This leaves us with two possible formulations of the problem; one with no
constraint other than the adding-up constraint }, x, < W for each s; and one
where we add the constraints x;,; > 0 for every / and s.

The decision whether to add the constraints x,; > 0 or not should be made
on grounds of what is right in terms of economics. But those constraints
provide a measure of analytical convenience as well: With them, the space over
which the maximum is taken—the space {(x;,) € RIS . Y Xps < W for each

s, Xy = 0 for all h and s}—is compact, and we are assured that the



maximization problem has a solution for every weighting vector (a;,). Without

the nonnegativity constraints, the set over which the maximum is taken is not
compact, and for particular weights or even in general, the maximization
problem may have no solution. Among the ways in which a solution may fail
to exist are the following two:

First, suppose individual WO s given no weight, or a0 = 0. Then

providing 1 with an immensely negative share has no impact on the
objective function and allows an individual with positive weight to have an
immensely positive share. Depending on the behavior of the utility
functions of individuals with positive weight (whether their utility functions
are bounded above), this may or may not mean that unbounded objective-
finction values are possible. But as long as each U, is strictly increasing
(which we’ve assumed), it does mean that there cannot be a solution to the
maximization problem.

We may as well take this opportunity to deal with the issue of zero
weights in the weighting function. As just discussed, if we do not have the
constraints x;,; > 0 and if the weighting vector has some of weights equal to

zero, then the maximization problem has no solution. On the other hand, i
we do have the constraints x;, > 0 and some a;,, = 0, then maximizing the
weighted sum of utilities leads to x;,; = 0 for all s: Ifx, o > 0 for any s,
then transferring that share in state s to some /2y with ey, > 0, increases the

utility ofh, and hence the sum of utilities, with no impact through the
decrease in expected utility for 4. (If U,5(0) = —oo, we have to worry about
how to interpret 0 - U,(0), but the interpretation we’ll adopt is that this is
zero.) Therefore, if we do have these nonnegativity constraints, when
maximizing the weighted sum with some zero weights, the thing to do is
to give individuals with zero weights zero shares and maximize over
everyone else. And the resulting solutions will necessarily be fully Pareto
efficient. It isn’t always true, but in this specific application of Proposition
8.10, we do not need to worry about producing Pareto-ineflicient solutions
when the weighting vector includes some zeros.



e Second, suppose individuals 70 and h' diffr in their assessment of some
state. Suppose, in particular, that 77:h0(s0) > n'hl(so) Since each individual’s
probabilities must sum to one, this means that

Thi(8') > mho(s')

for some other states'. But then, if U, and Ujo are “insufficiently
concave,” we get existence problems for nearly every vector of weights. To
be very specific, suppose both U1 and U,0 are linear, so both individuals

are risk neutral. Disagreeing as they do over the relative probabilities of

1

states s° and s, you can construct a bet between them where 1" wins ifs!

occurs and loses ifs? occurs, and with o taking the other side of this bet,
which both of them view as having subjective positive expectation. If they
are both risk neutral, increasing the scale of this bet between them, whatever
else happens in the sharing rule, drives the expected utilities of both of them
to +oo, and regardless of the weighting vector, as long as it gives one or the
other positive weight, this drives the objective function to +oo; the problem
has no solution. (If one or the other has zero weight, we already know from
two paragraphs ago that there can be no solution.)

Please note carefully that while the maximization problem may not have a
solution for some weighting vectors, this doesn’t affect our earlier results: We
still know that any Pareto-efficient social state will be a solution of this problem
for some weights (a,), < > and every solution that we do manage to find will be

Pareto efficient. So the plot remains the same: We want to characterize solutions
to those maximization problems, as we parametrically vary the weighting
vectors, since solutions are Pareto efficient and Pareto-efficient sharing rules
correspond to solutions. And when it comes to looking for solutions to the
maximization problems, the following result simplifies the task.

Proposition 8.12. (x,), e y.ce s maximizes
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h ]

subject to the constraints Y, x,, < W for all s (and, depending on the
formulation, x;,, > 0 for all h and s) if and only if the net-of-endowments

sharing rule for each state s, or (x;,), e py» Mmaximizes

Z ap Ty (8)Un (The)
h

subject to the constraint 3, x, < W (and, depending on the formulation, x,; >
0 for all h), for each state s independently.

In other words, we can solve the maximization problem state by state and then
paste the results together. Seeing that this is so is a matter of noting that

Zm, ZTH;I:S:IE-:!-.(JU;S,) =Z Zﬁmﬁa(-ﬂ{fﬁ[lhs}-
h

h a ]

This just involves changing the order of the two summations. Maximizing the
objective function (on the lefi-hand side of the last displayed equation) amounts
to maximizing the right-hand side, and since none of the constraints cut across
the states, this amounts to maximizing separately each term in the sum on the
right-hand side.

At the risk of (once again) being overly pedantic, let me be clear what this is
saying. Once we fix the weights (e;),cy and set out to maximize, to find

Pareto-efficient sharing rules, we maximize on each state independently of what
happens in the other states. But this is for fixed weights. When it comes to
picking ffom among the Pareto-eficient sharing rules, if it ever does come to
that, then a selection of which Pareto-efficient sharing rule is equitable will



involve the computation of overall expected utilities, which cuts across states.
Now assume that each Uj, is differentiable, with derivative denoted by [ ;; .

We are looking for solutions to

Maximize Z axTh(8)Un(Ths), subject to Z"”“S < W,,
h

plus possibly nonnegativity constraints. Letting 2, be the multiplier on the
adding-up constraint and noting that the adding-up contraint will bind at any
optimum, the first-order, complementary slackness (FOCS) conditions for an
optimum if we do not have the nonnegativity constraints are

anTr(8)Uy (xh.) = A, and Zarhs =W,.
h

If we do have the nonnegativity constraints, the FOCS conditions change to

oy Th(8)U (23s) < A, with equality if z,, >0, and z =W,

Since the constraints are all linear and the objective function is concave, the
FOCS conditions are sufficient for an optimum; since the constraint qualification
holds, they are necessary. That is, these FOCS conditions characterize the
Pareto-efficient net-ofendowmentoutcomes for each individual or, equivalently,
the Pareto-efficient sharing rules. They can be used, for instance, to derive the
following:

» Suppose every individual except possibly one is strictly risk averse. Then
for each weighting vector, there is a unique solution to the maximization
problem.

*  With or without the nonnegativity constraints, the Pareto-efficient net-of
endowment outcome rules depend on the total endowment vector ¥ and



not on how the total endowment is divided between the income ffom the
ventures held by the syndicate and the private endowments of each
individual. Roughly put, while the syndicate may have been formed to share
in income produced from risky ventures that are jointly held by the
syndicate, Pareto-efficient sharing rules propel members of the syndicate into
sharing the risks of their private endowments. (This is not true if constraints
of the form x;,; > e are added.)

Suppose individuals have common subjective probability assessments; that
is, my,(s) = m;(s) for all states s and pairs of individuals / and 4" Then the

(common) probability assessment is irrelevant to Pareto-efficient sharing
rules; if the (common) probability assessment changed to some different but
still common assessment, the set of Pareto-efficient sharing rules would not
change at all.

Suppose individuals have common subjective probability assessments and

every individual except exactly one is strictly risk averse, and the one
exception is risk neutral. Suppose as well that (at least) the risk-neutral party
is not subject to the nonnegativity constraint. Then every Pareto-efficient
rule has all the (strictly) risk averse individuals receiving a net-of
endowment outcome that is constant across the states, with the one risk-
neutral individual absorbing all the risk. (The size of the various constant
net-ofendowment outcomes determines where on the Pareto frontier the
sharing rule is found.)

Suppose individuals have common subjective probability assessments,
nonnegativity constraints are not imposed, and every individual has a
constant-absolute-risk-aversion utility fanction, or Uy(x) = —e #*. Let 7, =
1/w,; 1), is sometimes called the coefficient of risk tolerence of individual /.

Let T =}, 7;. Then Pareto-efficient rules have the form

G %“1-1-;, ey,

for constants kj, that sum to zero (and move the sharing rule ffom one point



on the Pareto frontier to another).

Problem 8.10 provides you with the opportunity to prove each of these claims.

8.6. Efficiency?

By restricting attention to efficiency, economics avoids controversy. Surely, the
argument goes, we can all agree that an inefficient social outcome is bad and
should be replaced by an outcome that Pareto dominates it. Who would argue
against moving flom one social state to another, if the second social state is
weakly preferred to the first by everyone and strictly preferred by some?
Controversy arises when we debate among the Pareto-efficient states. But can
there be any reason not to look for an efficient outcome?

Taken for what it says and not misused for what it doesn’t say, this
argument is largely unexceptional, which is why controversy-averse economists
are fond of it. But (1) it can be and, in some instances, has been misused. And
(2) some situations present complications or, at least, reasons to wonder about
the appeal ofefficiency defined in the fashion of this chapter.

The misuses arise when the focus is on the comparison of processes or
policies or mechanisms, rather than on social outcomes. One
process/policy/mechanism may guarantee an efficient outcome. Another may
ofer no such guarantee; indeed, another process/policy/mechanism may
guarantee a social outcome that is inefficient. Does this make the first better
than the second? Suppose the first guarantees a social outcome that, while
efficient, is vastly inequitable; the competing mechanism may provide an
inefficient outcome that is substantially more equitable. To reject the second
mechanism on grounds that it is “inefficient” is, in essence, to say that any
efficient outcome is better than any inefficient outcome. The argument for
efficiency in this chapter certainly doesn’t imply that. To give a concrete
example (for readers with background in the relevant parts of economics), free-
trade policies may lead to eficient outcomes, while protectionism may lead to
ineflicient results. But this doesn’t mean that everyone in the economy benefits
when a society moves from protectionism to free trade. Don’t misunderstand,
I’m not saying that protectionism is better (I'm also not trying to defend the
proposition that fiee trade leads to efficient outcomes; that is a complex question
that is well beyond the scope of this volume or even the material planned for



subsequent volumes.) But, granting the assertion that fiee trade leads to an
efficient outcome and protectionism does not, this is not, by itself, a compelling
argument in favor of fiee trade. (This takes one into the issue of compensation,
and I again recommend Arrow’s chapter on the topic.)

The complications all have to do with the basic premise of Pareto efficiency,

sometimes called consumer sovereignty, that the preferences of the individuals
involved are all that matters.

1.

Suppose the context is dynamic and, contrary to the standard models of
dynamic choice/behavior, the preferences of the individuals involved change
through time. Do we regard the individual’s initial preferences as
controlling the definition of efficiency, or her final preferences? Instead,
perhaps we should define efficiency as: One social outcome is Pareto
superior to a second if each individual, at each point in time, regards the
first as at least as good. And if this is the criterion employed, what if the
choice of social state endogenously informs the way in which the
individual’s preferences change? That is, she has one set of “later”
preferences in social state x, and a diferent set of “later” preferences in social
state y. How do we compare x and y in such circumstances?

Changing preferences are not standard in economics, so item 1 might be
regarded as something of a diversion flom the mainstream of economic
thought and practice. But, still in a dynamic context, suppose the choice of
social state affects which individuals come into (later) existence. How do we
treat the preferences of the not yet born if under state x, they will be born,
while in state y, they never will be?

A third dynamic effect concerns the distinction between ex ante and ex
post utility or preferences. It is easiest to raise the issue with a story:
Throughout the 1970s, the Institute for Mathematical Studies in the Social
Sciences (or IMSSS) sponsored a biweekly series of seminars in economic
theory at Stanford University. Speakers would talk for an hour, and then
everyone would adjourn for cofee or tea and cookies in the lounge, affer
which the seminar would continue for another hour or so. In the lounge was
a sofa with small pillows and, one day, two famous economic theorists, Joe
and Bob, were arguing over the contents of the pillows. Joe maintained that
the pillow had a natural down filling, while Bob thought a synthetic filling



was more likely. Being famous economic theorists, they quantified their
uncertainty, with Bob assessing probability 0.2 that the filling was natural
and Joe assessing probability 0.9. They decided, therefore, to construct a
bet about this: If the pillow had natural down, Bob would pay Joe $100,
but if it had artificial down, Joe would pay Bob $200. The problem was
that they could only discover the truth by cutting the pillow open, which
would destroy it. A new pillow would cost $50, and after consulting their
utility functions, they discovered:

+ Relative to not betting at all, Bob would prefer a bet in which he wins
$150 ifthe pillow has artificial down filling and loses $100 ifit did not
(a 0.8 chance at $150 and a 0.2 chance at —$100).

* Relative to not betting at all, Joe would prefer a bet in which he wins
$50 if the pillow has natural filling and loses $200 if not (a 0.9 chance
of $50 and a 0.1 chance of —$200 ifit does not).

They could conduct this bet, which would destroy the pillow but leave
$50 in hand with which to buy a new pillow. Hence, ffom the ex ante
perspective, betting is Pareto superior to not betting. But ex post, all that
happens is that money has changed hands and a perfectly good pillow has
been destroyed. Is this really what we mean by Pareto superiority?

The final complication, which is not specifically dynamic, goes right at
the heart of consumer sovereignty and might be called paternalism. Few
economists would think of extending the idea that the individual’s
preferences are all that matters to, say, the preferences of children. This
could be labeled as a manifestation of changing tastes (with a clear preference
for what, one hopes, will be where tastes end up), or perhaps as preferences
that are not adequately informed by all available information. But in the
latter case, do we then define Pareto superiority in terms of what individuals
would prefer if they had full information? What if the choice of social state
affects what information individuals have? What if for instance, the verdict
is that social statex would be judged efficient if everyone had full
information, but x precludes that everyone has full information, so that a
number of individuals regard x as infrior to y? And what if it is not a
question of information, but simply a case of pure paternalism: An



individual prefers an outcome that, society strongly believes, is bad for that
individual? (Suppose the individual is genetically predisposed to
alcoholism, for instance. Or, to take an example that is a bit less extreme
and certainly more controversial, suppose some members of society save too
little for their own good, at least according to “experts.”)

In mainstream economics, these sorts of issues rarely arise. So the general
lure of efficiency in mainstream economics is and remains very strong. But,
rarely is not never, and categories 2 and 4 given above are the starting point for
some controversies. Especially as economics expands its grasp in the directions
of behavioral phenomena, it is worthwhile to maintain a somewhat skeptical
view of efficiency as defined by an economist.

Bibliographic Notes
The classic reference in the theory of social choice is Arrow (1951a). Another

excellent monograph is Sen (1970). Syndicate theory is studied in Wilson
(1968).

Problems

m 8.1. In the text, we observed that if 1" is a dictator in the social preference
function @, this doesn’t imply that @ produced social preferences “— that are

identical to =« In particular, if 1" is indifferent between x and y, then @ can

produce strict preference in either direction, while still having 1" be a dictator
according to @.

(a) We never settled the question of whether there is any social preference
function that satisfies unanimity and IIA (and Assumption 8.1); Arrow’s
Theorem only shows that if there is such a social preference function, it must be
dictatorial. So, please clear up the existence question by producing a social
preference function that satisfies Assumption 8.1, unanimity, and IIA.

(b) Suppose that @ works as follows: The individuals in H are sequenced
arbitrarily as Ay, hy, ..., h, (where n is the cardinality of H). For the array (‘—



Whe P gives social preferences — that work as follows: For every x and 3, x
e yif Xy Yiorx ~p, yandx:::—hz Y01 x ~p, yandx~h2y andx:::-h3 y; and
so forth. Ifx ~, y for all o, thenx ~y. In words, we have asequential
dictatorship: If hy has a strict preference, society adopts that; if4 is indifferent
between x and y, we go on to consult 4,, and so forth. Does this social
preference function satisfy Assumption 8.1, unanimity, and/or ITA?

(c) Suppose that X contains more than three elements. Does (b) exhaust the set
of social preference functions that satisfy Assumption 8.1, unanimity, and IIA?

(If so, you must prove it. If not, you can simply supply a social preference
function that satisfies these properties and is not a sequential dictatorship.)

m 8.2. Arrow’s Theorem makes the assumption that X has at least three
elements. What happens if X has two elements?

m *8.3. (a) Prove Proposition 8.5.

(b) Give the sort of example described two paragraphs afer the statement of
Proposition 8.5. (You can do this even ifyou can’t do part (a).)

m 8.4. Prove Proposition 8.7.

m *8.5. Prove that ifx¥ is Pareto efficient in 4 and if fr each & € H (for a finite
H), uy, is a utility finction representing /’s preferences, then there is a strictly

increasing fanction W : R — R such that x* maximizes W iy u over the set 4.
(Warning: If 4 is infinite, the fanction # may have to be discontinuous.)

m *8.6. I assert in the course of discussing Figure 8.2 (and the proof of
Proposition 8.10) that even if X is convex and each u, is a concave function, the
set {v € R y= u(x) for some x € X} may not be convex “to the southwest.”

(See Figure 8.2a, in particular.) Give an example to demonstrate this.

| *8.7. Prove Proposition 8.11.



m 8.8. Give proofs of the fllowing three results claimed in the discussion of
syndicate theory: (a) If constraints of the form x;,; > 0 are not imposed and ifa;,

= 0 for someh, then the maximization problem has no solution. (b) If
constraints of the form x,; > 0 are imposed, then even ifa;, = 0 for some of the

h, any solution of the maximization problem provides a Pareto-efficient sharing
rule. (c) If some sharing rule x’ Pareto dominates another sharing rule x, then
some sharing rule x” strictly Pareto dominates x. (Why are parts (b) and (c)
connected?)

m 8.9. In the formulation where the shares are not constrained, suppose that
individuals #' and h? differ in their assessment of state s%; specifically, suppose
that nhl(so) > ”hz(sl)‘ And suppose that both i and k% are risk neutral. In the
text, a loose argument is given that this will mean that the maximization
problem will have no solution, as long as either a1 or ;2 is nonzero. Give a

tight argument that this is so. (Since a different argument covers the case where
any individual has zero weight, you may if you wish assume that both of them
have strictly positive weight.) Then: in the discussion, it first says that this sort
of thing will cause existence problems ifU,1 and U,2 are “insufficiently

concave.” Show by example that existence problems can occur if both U1 and
U2 are strictly concave, but still “insufficiently concave” (where part of the
problem is to figure out what that vague phrase might mean).

m *8.10. Prove each of'the bullet-point claims on pages 191-2.

m 8-11. Consider a two-person society in which there are two consumption

goods, x| and x,.  Individual  I’s  utility  finction  is
ui(zl, 2}y = 6 + 0.41In(x}) + 0.6 In(xd), while
individual 2’s utility function is

12 Ii_l% . i} — B 1 lniri) + 111{:1:5.] . The social endowent
consists of 15 units of the first good and 20 units ofthe second good, to be split
between the two.



What division of the social endowment between the two individuals maximizes
the social utility functional 2 min{u,, u,} + max{u;, u,}?

Hint: What does Figure 8.4 depict, and how did I construct it?
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Figure 8.4. Hint for Problem 8.11.

’ 1

U In fict, Arrow calls these objects social welfare functions; 1 use the
alternative social preference function to prevent confusion with what later will
be called asocial utility functional and also to signal clearly that this is an
object that maps arrays of preferences into social preferences.

2 You might wonder how we will get members of the society to tell us their
preferences. If they know the rule by which their preferences will be mapped into
a social preference relation and, thence, into some social state, mightn’t they
have the incentive to misrepresent how they feel? A remarkable variation of
Arrow’s Theorem, known as the Gibbard-Satterthwaite Theorem, takes up this
question. This result properly belongs to Volume 2, and it is left for there.

3 The first half of Assumption 8.1 is offen called the universal domain
assumption; the second half is sometimes called the coherence assumption
(vaguely related to the terminology choice coherence from Chapter 1).

4 What ifthere are only two social outcomes? See Problem 8.2.

3 Unanimity is defined in terms of strict preferences and since, as we are about
to learn, the social preferences produced by majority rule are not complete and
transitive, it isn’t altogether obvious how one defines social strict preference.
I’'m using the Pllowing definition: For any binary relation - that is meant to
represent weak preferences, the corresponding strict preference relation is defined
by x = y ifit is not the case that y — x. Hence, ifx = y fr all h, where =
are strict prefrences defined from the complete and transitive individual
preferences =, in the usual fashion, then y = for no A, and so it is not true
that y — x by majority rule (in fict, no one votes for this). Therefore x = y in
the social strict preferences; unanimity holds.

® You can do it with weighted majority rule, if one person has more than
50% ofthe weight. But that is just another way to define dictatorship.

7 That is, if N = 6 and & has x| “—, X, ~, X3 ~, X4 =), X5 ~, X, then set
() = 6, 1y (xs) = uy(xy) = up(c3) = (5 + 4+ 3)3 =4, and uy(x,) = uy(x)) = 2



+1)2=1.5.

8 1 will use the Separating-Hyperplane Theorem, but readers who prefer can
concoct an argument that enlists the Supporting-Hyperplane Theorem,
Proposition A3.13. In fact, if you are new to arguments using separating
hyperplanes, it might be good practice to construct the supporting-hyperplane
version of the proof

9 As with the term social preference function, the term social utility
functional is not standard, but I use it to help prevent confusion. Please note
that the diference is not simply that one operates on preferences and the other on
utilities: The domain of a social preference function is the space of arrays of
preference relations and the range is a preference relation; the parallel concept
would be a function operating on an array (an / -tuple) of utility functions, and
mapping to a utility function. A social utility functional has a much less
complex domain and range; it maps a subset of R into R. (Of course, a social
utility functional implicitly creates a mapping from A -tuples of utility functions
into a utility function; if (1), < is an H -tuple of utility functions defined on
some set X and W : R — R, then W O (up)), ey 1s a utility fanction on X.)

10 Rather than the weak inequality <, you might want to insist on an equality
constraint. But we’ll shortly make assumptions on preferences that guarantee
that, for any Pareto-efficient sharing rule, the inequality constraint will bind.

Because we’ll enlist the optimization techniques of Appendix 5, an inequality
constraint is preferred.

' To Bllow up on footnote 10, since the U), are strictly increasing, this
constraint will bind for any Pareto-efficient sharing rule.

12 To be clear about what this means: To say that the individual utility
functions are concave is not to say that the individual’s von Neumann—
Morgenstern utility functions U, are concave, which we are assuming. Instead,

thinking of'a social state x as a sharing rule (y,), the proposition is saying that
the function uy(x) = ¥ 7,(5)U, (v, + €;,4) is a concave function ofx. This uses
the concavity ofthe U, of course, but still requires some proof

B3It we impose some of the constraints mentioned, depending on the
parameters of the problem, there may be no feasible sharing rules. To cover this



unhappy possibility, we fllow the usual convention that the empty set is
convex.

14 Suppose that 2’s endowment is unknown to other members of the
syndicate; in the terminology of Volume II, the endowments are private
information to their owners. And suppose that which Pareto-efficient sharing rule
the syndicate chooses is influenced by how well off are syndicate members
overall; richer syndicate members are given less weight. Then 7 might want to
hide her endowment if she is relatively rich, which might mean imposing this
sort of constraint; the syndicate can only share in the resources its members hold
jointly. But please note that this story imposes major difficulties on the project
of finding efficient sharing rules: If2’s endowment is not known to her fllow
syndicate members, how would they know her level of risk aversion, unless we
supposed that they assume she has constant risk aversion?



Chapter Nine




Competitive and
Profit-Maximizing Firms

Two categories of entities inhabit neoclassical microeconomic theory,
consumers and firms. We’ve met consumers at length already, with more to
come in Chapters 10 and 11. The story about firms is shorter and simpler; it
can be contained within a single albeit lengthy chapter.

In neoclassical economics, firms are optimizing entities, similar to
consumers. In more recent developments, firms are analyzed as institutions,
within which individual optimizing agents (investors, managers, employees,
and so forth) interact. In this volume and, in particular, in this chapter, we
explore the neoclassical theory only, treating firms as entities.

Also, we will restrict our attention to the special case of a competitive (or
price-taking), profit-maximizing firm. A large portion of the neoclassical theory
of the firm concemns firms with the power to affect prices, in the so-called
theories of monopoly, oligopoly, and monopolistic competition. Consumers,
with the exception of people such as Bill Gates, are naturally thought of as
being so small relative to the markets in which they participate, that their
actions do not materially affect the prices they face; for firms, this assumption is
certainly much less natural. Yet we will study only competitive firms and,
moreover, firms that face linear prices for their inputs and outputs. For reasons
to be discussed, we will study firms with a single objective function:
maximization of profit. And we will restrict attention to the “static” theory of
the firm: Firms, we will see momentarily, are entities that transform bundles of
commodities into different bundles of commodities via production; we will deal
only with instantaneous production, in which inputs are purchased, transformed,
and sold in an instant of time.! We will have more to say on this point when
we discuss the assumption that firms maximize their profits.

Finally, even within the context of competitive, static, and profit-
maximizing firms, one finds a number of ways to model the capabilities of firms
and the problem they face. Our attention in this chapter is almost entirely fixed
on the firm’s capabilities modeled as a production-possibility set ffom which it
chooses a profit-maximizing production plan given the prices for inputs and
outputs it faces. Alternatives include the problem of minimizing the cost of
producing a fixed amount of output, using input-requirement sets and facing



prices on inputs, or the profit-maximization problem but with the firm’s
capabilities given by a production function. We briefly outline the theory of cost
minimization and input-requirement sets near the end of the chapter.

9.1. The Production-Possibility Set

The commodity space is RX. The (one) firm has the power to transform vectors
of commodities into other vectors of commodities; we say that the firm engages
in production. A netput vector is a vector ffom R¥, where a negative component
connotes a net input into the firm’s production process and a positive
component connotes a net output. So, for instance, ifk = 5, the netput vector
(=2, 0, 3, —1, 2) is interpreted as the firm transforming two units of the first
commodity and one unit of the fourth into three units of the third and two units
of the fifth. These are net input and net output amounts—the —2 in the first
component could represent an initial input of three units, but with one unit
“returned” at the end of the production process. In this idealization, production
takes no time and, in fact, when we get to markets for inputs and outputs, the
story will be that the firm buys its net inputs and simultaneously sells its net
outputs, which doesn’t leave a lot oftime for the transformation to take place.

The firm is capable of some but not all netput vectors, and the full set of
production possibilities for the firm is given by a set Z S RF, the so-called
production-possibility set or set of feasible netput vectors for this firm. It is
typical to make assumptions on the shape of Z. Some common assumptions
are:

. No free production. # |7 Rk [ {{]} . In words, the only
nonnegative netput vector that could possibly be fasible is the zero vector.
The firm can’t turn nothing into something.

* Freedisposal. Ifz € Z and z' <z, then z' € Z. In words, ifthe firm can do
z, it can get by with more net input and less net output (or even turning
some net outputs into net inputs). Another paraphrase, very much in line
with the term free disposal, is: Dumpsters are freely available and fiee to use.

o The ability to shut down. 0 € Z. Or, in words, the firm can choose to do
nothing.

e Convexity. The set Z is convex.



» Closedness. The set Z is closed.
* Increasing returns to scale. Ifz € Z and o> 1, then az € Z.
» Decreasing returns to scale. Ifz € Zand 0 <a < 1, then oz € Z.

e Constant returns to scale. Ifz € Z, then oz € Z for all a >0.

These are fairly straightforward properties, although decreasing returns to
scale may give you a moment’s pause. The phrase “returns to scale” implicitly
means “scaling up,” and so increasing returns to scale says: The firm has the
ability to scale up any feasible production plan. On the other hand, decreasing
returns to scale says: Ifthe firm can do some production plan, it can do the same
plan on any (proportionally) smaller scale. It is when scale increases that feasible
production plans may become infeasible. Also, “increasing” and “decreasing”
here really mean “nondecreasing” and “nonincreasing,” respectively, so that an
alternative definition of constant returns to scale is that Z has both increasing
and decreasing returns.

In a moment, we will introduce the firm’s optimization problem, which is
to maximize profit, a linear finction of production. We will want, when the
time comes, to make assumptions that guarantee the existence of a solution, at
least for strictly positive prices, for which purpose the following property of Z
comes into play.

« The recession-cone property. If {z""} is a sequence ffom Z such that ||Z"|| —
oo, then every accumulation point of the set {z"/||Z"||; n = 1, 2, ...} lies in
the negative orthant of Rk 2

This property deserves considerable pondering. In words, if we have a sequence
of feasible production plans whose norms diverge, and if we normalize them by
dividing each one by its norm, so the result lies on the unit circle, then the
normalized vectors will only accumulate in the negative orthant. Rephrasing
roughly, if we take any ray in RF fom the origin that has some strictly positive
components (that doesn’t run off into the negative orthant), this ray eventually
“leaves” Z. Put this way, you can see that, except for cases where Z lies within
the negative orthant (the firm can only destroy commodities), the recession-cone
property is inconsistent with increasing (hence constant) returns to scale.



9.2. Profit Maximiztion

The production-possibility set Z describes the capabilities of the firm. The other
piece of this chapter’s model of the firm is the firm’s objective function, which
determines what the firm chooses to do. The firm, the model assumes, chooses
z to maximize its profit: A vector of prices p € Rk is fixed, so thatp - z is

the firm’s profit if it undertakes z; the firm chooses z € Z to maximize p - z.
Note well, p - z is the value in the market (at the given prices) ofall net outputs
(positive components ofz) less the cost to the firm in the market of all its net
inputs (negative components ofz).

We’ve already said it, but to reiterate, this assumes:

» The firm’s level of activities doesn’t affect the price of any good, whether an
input or an output.

* The firm faces linear prices.

And, as we’ve already said, especially when it comes to its outputs, it is less
than completely sensible to assume that firms have no impact on the prices they
face. General Motors has a pretty direct impact on the price of Cadillacs; it is
perhaps less obvious, but still plausible, that agribusiness giant ADM affects the
price of high-fructose comn syrup, one of its products, and perhaps (but less
likely) the price of corn, an input. Those are real and interesting possibilities
that are not considered in this chapter.

Even assuming that the firm has no effect on the prices it faces and that those
prices are linear, it is by no means obvious that the firm chooses to maximize
the profit it eams. Begin by thinking of a firm that is a sole proprietorship,
where the person making decisions is the owner of the firm and, therefore, the
residual claimant to the firm’s profit. Why would this individual choose z to
maximize profit? If for instance, the sole proprietor has a particular interest in
some activity—it is fun, say—might not the person engage in that activity,
even at the cost of some profit? Or what if the firm has separation between
owners and managers? The person(s) choosing the production plan is not the
residual claimant(s) to the profit of the firm but instead her agent(s). What
motivates the manager cum agent to choose a profit-maximizing plan? Finally,
in real lif (but not this model) firms exist for multiple periods. Profit is not a
clearly defined concept in this case: Does it mean accounting earnings or



income? And how should trade-of§ be made between income in one period and
in the next? (We will confiont these issues in Chapter 16, when time is
introduced into our models in a serious way.)

These are all good questions, and a large literature in economics exists to

deal with them. It is impossible to do justice to this literature here, without
expanding this chapter unreasonably and, in any case, some of the answers
require pieces of economics that we haven’t yet studied. So I’ll plead simply
that profit maximization is a modeling assumption, one with which economists
are comfortable not as a law of nature but as an approximation to reality. Having
said that, three specific points are worth making, albeit briefly.

Profit maximization as an objective function for firms is a lot more specific
than utility maximization for consumers. When we assume that a consumer
maximizes her utility, we leave it up to the consumer how she feels about
apples versus oranges. But, once prices are given, the trade-off§ facing a firm
are fixed ifthe firm maximizes profit. (On the other hand, the choice set ofa
consumer is fixed once prices are fixed and the consumer’s income is given.
For firms, the production-possibility set Z gives a lot of latitude to the
modeler.)

Accounting earnings or income is not economic profit. Accounting income
does not include any return on capital equipment.

The arguments in the literature for profit maximization when there is a
division between managers and owners of the firm turn to some extent on a
contention that managers act on behalfofthe firm’s owners, who prefer profit
maximization. Why managers do this is usually the issue being studied in
the literature. But it is worth noting that the assertion that owners prefer
profit maximization is very bound up in the assumption that the firm has no
impact on prices. When firms affect prices, and when owners of the firm
consume (or are endowed with) the goods whose prices the firm affects, it is
no longer clear that the owners either should or do prefer profit-maximizing
choices by firms.

9.3. Basics of the Firm’s Profit-Maximiztion Problem

For most of the remainder of this chapter, then, we study the firms profit-



maximization problem: For a given Z S RK andp € Rk s
maximize p - z, subject to z € Z.

Fixing Z, wedefine
7'(p)= agmax{p-z:2€Z} and m(p)=sup{p-2:2€Z}.

Elements on*(p) are called both optimal netput vectors and optimal production

plans for the firm at prices p; the correspondencep = Z*(p) is the firm’s
optimal netput correspondence. The function z is called the profit function. For
the remainder of this chapter, we assume that Z # E| so that z(p) > —oo for all p.

Because Z is not necessarily compact, we don’t know, for a given price
vector p, that a solution to this problem exists. A solution could fail to exist on
either of two (general) grounds: z(p) may be finite, but Z isn’t closed. And z(p)
could be infinite: For each n = 1, 2, ..., there could be some z” € Z such that p
- 2" > n. In either case, we would say that Z*(p) = [Z| And, in the second case,
we say that z(p) = .

These are real possibilities, depending on what is assumed about Z. In
particular, assumptions of increasing returns to scale are problematic.

Proposition 9.1.  Suppose that Z exhibits increasing returns to scale. Then

for everyp € Rk , if e(p) > 0, then n(p) = .

Proof. Suppose z(p) > 0. Then for some ez P 22> 0. But by increasing
returns to scale, for each positive integer 7, n® € Z, so zp)=p - (nzo) =n(p -
zO), which goes to o as n goes to .

Corollary 9.2.  Suppose that Z exhibits increasing returns to scale and 0 €
Z. (In particular, if Z exhibits constant returns to scale, this is true.) Then for
everyp € Rk , either n(p) = 0 or n(p) = .

Proof. If0 € Z, then m(p) > 0 for all p. Apply the previous proposition. g



Results that work even if Z*(p) = E'] for some p

We know that 7(p) is either finite or +oo for all p.> Because 7(p) = —oo has been
ruled out, we can talk about 7 being convex and homogeneous of degree 1, even
ifit is sometimes infinite valued:

* The convex combination az(p) + (1 — a)x(p’) for a € [0, 1] equals n(p) ifa
=1, n(p’) ifa = 0, the usual thing ifa € (0, 1) and both z(p) and n(p") are
finite, and « ifa € (0, 1) and either z(p) or z(p") orbothareinfinite.

e The term ox(p) for a > 0 is defined to be 0 ifa = 0 (even ifn(p) = ), the
usual thing ifa > 0 and z(p) < oo, and o ifa > 0 and 7(p) = .

With these conventions, convexity and homogeneity are defined precisely as in
the case of real-valued functions.

Proposition 9.3. The function m is homogeneous of degree 1 and convex. For
all p and fezze Z*(p) if and only ifz* is a subgradient of 7 at p.

Proof. For homogeneity, take any p and a > 0. If z(p) < oo, then for each £ > 0,
there is some & = # such that p: eI },‘[j_]j — ¢, But then

map) = (ap) - 2° = a(p- 2°) = a(r(p) — €) = an(p) — ae.

Since ¢ is arbitrary here, this implies that z(op) > om(p). Ifz(p) = oo, then for
any positive integer n, for some z" € Z, p - 2" > n. But then n(ap) > (op) - 2" =
alp - Z") >an, and sincen is an arbitrary positive integer here, we again
conclude that z(ap) > an(p). These are the only two cases, so n(ap) > an(p)
unconditionally. Apply this to p'= op and a’= 1/a, and you conclude that z(p)
> (1/a) n(ap), and combining the two inequalities shows that z(ap) = ax(p).
This leaves the special case a = 0. The function 7 has only been defined for
pE Rk , S0 in one sense, we don’t have to worry about & = 0; 0 - p = 0, so

w(op) for & = 0 is not defined. But there is no problem in extending the domain



of definition of 7 (: = sup,e , p - z) to all nonnegative p (or even p with negative

components); if we do this forp = 0, we get (of course) z(0) = 0. And our
convention is that 0 - z(p) = 0, whether z(p) is finite or infinite, so z(op) =
orr(p) works for a = 0

Hence, the function 7z is homogeneous of degree 1.

To show that 7 is convex, We need to show that z(ap + (1 — a)p’) < an(p) +
(1—-a)ap) Prallp, p' € R and a € [0, 1]. Let p” denote op + (1 — a)p’

for the duration of this proof The cases o = 0 and a = 1 are trivial. So suppose
o € (0, 1). Supposen(p”) < . For every £ > 0, there is (then) some

€ = 7 suchthat p” . ey -}I—u_]”)" — ¢, But then
arp)+1-a)r@) = alp-29+1-a)p' - 29
=(ap+(1-a)) f=p" 20" -
Since & > 0 is arbitrary, this implies that
am(p)+ (1 —a)m(p) = n(p")
This leaves the case a € (0, 1) and z(p") = 0. Ifeither z(p) = © or z(p’) =

o, then an(p) + (1 — a)a(p’) = , and we are done. So we only need to worry
about the case there both #(p) and z(p’) are finite. But if both are finite, since

7(p") = oo, we can find az' € Zsuch that p" - 2> max{z(p), 7(p)}. That is,
max{(p), 7(p)} < p" 2" =(ap+(1-a)p) 2
= qa(p- ::") +1-a)p 2" <ar(p) + (1- a)m(p),

an obvious contradiction. This covers all cases; 7 is convex.

In general, subgradients of 7 at p are affine functions, but since we know that
7 is homogeneous of degree 1, Proposition A3.26 tells us that subgradients are
linear; that is, they have the form p -Z" Br somez" € R Andz' is a



subgradient at p ifp - = () and p' - 2 < n(p") for all p’" in the domain of .
Now as long as z* € Z (which is part of the premise), p’ "< n(p’) Prall p’ €
Rk (the domain of 7). So this part of the proposition comes down to: for p

andz" €2 7 € Z*(p) ifand only ifp = #(p). This is, pretty much, a
definition of Z*(p).*

It would be nice to be able conclude that ifz" is a subgradient of 7 at p,
then z° € Z"(p), without assuming that z* € Z. But this isn’t true. It isn’t
hard to construct examples where z € RFisa subgradient of 7 at some p, but z&
Z. (Let k=2and let Z = {(-1, 1), (-3, 2), (0, 0)}. What is z?) However, while
this isn’t true, it is sort-of true, in a sense that we will explain later in the
chapter.

Moving from convexity and homogeneity of the profit function to convexity
and homogeneity of the solution set, a fw results can be harvested, even
allowing for nonexistence of a solution. Keep in mind that, by definition, the
empty set is trivially convex.

Proposition 9.4. If Z is convex, then Z*(p) is convex for each p.

Proof. Suppose z and z' are both in Z*(p). Foralla € [0, 1], z + (1 —a)z’ €
Z because Z is convex, and p-(az + (1-a)z") = apzt (1-a)p -z' = an(p) +
(1-a)x(p) = n(p); therefore oz + (1 — a)z' € Z*(p). ]

In the spirit of earlier results on uniqueness of solutions, we’d like to give
conditions under which Z*(p) is at most singleton. We say “at most” here
because we aren’t (yet) going to rule out that Z*(p) is empty. But ifZ*(p) is
nonempty, we’d like it to be singleton. Unhappily, the method we employed
previously to get a unique solution result does not work here. That method
invokes strict quasiconcavity of the objective function (typically, the utility
function). But the objective function here is linear. What we need instead is an
assumption that the feasible set Z is “strictly convex.” This isn’t a concept
we’ve encountered; hence the scare quotes. But something like the following
seems to capture what we might mean: If distinct z and z' are both in Z, points
along the line segment that joins them are not on the boundary of Z but are



instead interior to Z.
In fact, we need something less than this to be true of Z, because we only
need “interiority” in directions that increase profit.

Proposition 9.5.  Suppose Z has the property that, if z, z' are distinct
elements of z, then there exist an a € (0, 1) and a nonzero, nonnegative vector
e Rk (depending on z, z', and @) such that { + oz + (1 —a)z' € Z. Then

for all strictly positive p, Z*(p) is either empty or singleton.

Before giving the (pretty simple) proof remarks about the property are worth
making. We aren’t looking at all convex combinations of z and z' because we
only need one. And you should think of (" as a small addition to the convex
combination of z and z'; we will settle for any (small) nonnegative combination,
because prices are strictly positive. Of course, this property is implied by the
more restrictive assumption that, for all distinct z and z’ in Z, every nontrivial
convex combination of them (that is, az + (1 — a)z' fora € (0, 1)) is in the
interior of Z.

Proof. Suppose z and z' are distinct elements of Z that, for some p, are both in
Z*(p). Produce the { and a assumed to exist, and note that p - ({ + az + (1 —
o)y =p - + a(p). Since { is nonnegative and nonzero and p is strictly
positive, p - (is strictly positive, and this immediately gives a contradiction. It
is impossible for Z*(p) to contain two distinct production plans. gy

Proposition 9.6. For all p and o> 0, Z"(p) = Z"(op).

In words, the set of solutions is homogeneous of degree 0 in p, as long as we
don’t go to the extreme of a price vector that is identically zero (that is, by
taking a = 0). I assume you don’t need the details ofa proof for this.

Existence of solutions, and a technical lemma

Proposition 9.7.  Suppose Z is closed and nonempty. For a given z, a
solution to the firm$ profit-maximization problem exists for every strictly
positive price vector p if and only if Z satisfies the recession-cone property
(repeated here for convenience): If {z"; n=1, 2, ...} is a sequence from Z such



that ||2"|| — oo, then every accumulation point of the set {Z""/||z"||; n = 1, 2,
..} lies in the negative orthant Qka.

Remark: 1t will become obvious in the course of the proof that ifZ admits a
solution to the profit-maximization problem for every strictly positive p, then Z
has the recession-cone property, even ifit is not closed. And if Z is empty, then
clearly the profit-maximization problem never has a solution, so Z being
nonempty is necessary for there to be solutions. The assumption that Z is
closed is sufficient but not, strictly speaking, necessary for there to be solutions
for all strictly positive p, since Z could fail to be closed in inessential places,
places where the firm would never go to find a profit-maximizing production
plan regardless of prices (such as, in the negative orthant, if0 € Z).

Proof. First we show that the recession-cone property is sufficient: Fix a strictly
positive price vector p. Take any Lez@is nonempty), and let L = p - 20 -
1. Of course, L is then a lower bound on the feasible profit at the price vector p.

Take a sequence {z"} of production vectors in Z such that p - z" approaches
the value sup,c ; p - z. If this sequence lives inside a bounded set, or even if
some subsequence of the sequence lies inside a bounded set, then an
accumulation point (of the subsequence) can be extracted. This accumulation
point will be in Z, because Z is closed, and (by continuity ofp - z in z) it will
be a solution to the firm’s profit-maximization problem. The only case we must
worry about, then, is if {z""} eventually leaves every bounded set, which implies
that ||z"|| — . Also, p - 2" > L for all sufficiently large 7.

Let T — T ."' T || (Do this for n large enough so that 2 = 0 no

an

longer happens and so that p - 2" > L.) The sequence { _IL lives on the unit

circle; hence it has accumulation points. Since p " >L,

p - :4:"3 -~ L II.-' |::-‘1'|| . The limit in n of the right-hand side is zero,

and  hence, ﬁ)r any accumulation  point, 5 of the sequence
{ 1.} p - 2 0.r- z">0. But by the recession-cone property,

. * I . . .
any and all accumulation points z must lie in the negative orthant. Since p is
strictly positive, p - 2" <0, a contradiction.



And to show that the recession-cone property is necessary: Suppose the
recession-cone property fails. That is, for some sequence {z"} ffom Z, ||Z"|| —
“Il

o and 2/||2"|| — z, which is not in the negative orthant. Leti be any

component of such that »** == (] Consider the price vector p* that is 1 in

all components but the i;h, and has the Value{,l,‘ + 1:|-' #% in theith
! T

component. Since 2" lies on the unit circle, none ofits components can have an
absolute value greater than 1, so in p* - Z", the contribution of the ith term in
the inner product is at least £ + 1 (positive) and the contribution of all other
terms can be no less than —1 (there are £ — 1 of'these), so the inner product is at
least 2. Moreover, by continuity of the inner product, there is some N
sufficiently large so that for all n > N,

o TE

127

Therefore, for all these n,

o TE

-

i

which goes to infinity, and the firm’s profit-maximization problem has no
solution at p”. ]

The proof of this proposition shows why the recession-cone property is just
the thing for the result we want. If we can go arbitrarily far out (in norm) in a
direction that is not in the negative orthant, we can find a strictly positive price
vector that gives strictly positive profit in that direction, and going further and
further in that direction (at those prices) will give unbounded profit. If there is a
solution to the profit-maximization problem for every strictly positive price
vector, the recession-cone property is necessary. On the other hand, while Z can
be unbounded, if we know that there is some feasible profit level L, then we
know that the solution to the profit-maximization problem at prices p must lie
within {z € Z:p - z>L} =Z N {z € R* :p -z >L}. The recession-cone



property tells us, essentially, that for every strictly positive price vector p, this
intersection of Z and a halfspace is a bounded set. As long as Z is closed, it is
moreover a compact set and, fixing the prices p, we can restrict our attention to
a compact set when looking for a profit-maximizing production plan.

The following technical lemma extends the result announced at the end of
the previous paragraph. Can you guess the purpose of this lemma?

Lemma 9.8.  Suppose Z is closed, nonempty, and has the recession-cone
property. Then for any 2 € Z, the correspondence

p={2€Z:p-2>p- 2

is locally bounded and upper semi-continuous.

Proof. Upper semi-continuity of the correspondence is easy: Suppose {(p", z"")}
is a sequence of price—production plan pairs in the graph of the correspondence
with limit (p, z). By assumption, p remains in the domain of the
correspondence; we assume that p is strictly positive, and the key is to prove
that z lies in the correspondence evaluated at p. Since Z is closed and z is the
limit of points 2" in Z, z is certainly in Z. And since p" - 2 > p" - 2° for each n
and the dot product is jointly continuous, we know by continuity that p - z >p
-2 That’s it for upper semi-continuity.

Local boundedness is harder. If the correspondence is not locally bounded,
then it fails at some strictly positive price vector p. At this price vector p, there
is a sequence of prices {p"} with limit p and corresponding {z"} such that 2" €
Zand p" - 2" >p" -2 and lim, ||z"|| = oo. Define AN _ AT .,.'||:1J‘e-|| ]

!
Each é"ﬂ lies in the unit circle, a compact set, so by looking along a
subsequence if necessary, we can assume that the sequence { :"f“ Jl, converges to

* .
somez. Since p" Z" >p" 2% fr  each

n, prgn = pran /|2 2 g 2.

know that the p” converge to p, the &7 converge to z", and z2/||2"|| converges

to 0, so we know that p >0 But p is strictly positive and z" lies in the



negative orthant by the recession-cone property, a contradiction. The
correspondence is indeed locally bounded. g

Before we make (the obvious?) use of the lemma, one final remark on
existence of solutions is in order. The recession-cone property is, essentially,
just what is needed to ensure the existence of solutions to the firm’s profit-
maximization problems for all strictly positive p. But it isn’t the most
transparent property in the world, and you will find treatments of the theory of
the firm that give more transparent properties on Z that are sufficient for
solutions to exist. One that is particularly prevalent is the assumption that Z is,
up to fiee disposal, generated by a compact set. To be precise, the property is
that there is some compact set 79 such that Z° S Z and, for every z € Z, there
is some z in Z° (depending on z) such that 2% >z. It is straightforward to see
that, if such aZ0 did exist, then all pointsz € Z and not in 7% are not
candidates for solutions to the profit-maximization problem at any strictly
positive price p, since any disparity between z and its z° is, at strictly positive
prices, a recipe for lowering profit. Hence with such aZ’ we can restrict
attention in solving the profit-maximization problem to 7% And ifZ° is
compact, life becomes very easy.

Of course, this means that if such a 70 exists, then Z satisfies the recession-
cone property. As a bit of drill, you might wish to prove that directly.

Berge’s Theorem for the profit-maximization problem
Getting back to the lemma, it is the key step to proving the following:

Proposition 9.9 (Berge’s Theorem for the profit-maximiztion problem). /f
Z is closed, nonempty, and satisfies the recession-cone property, then the
correspondence p = Z*(p) is nonempty valued, locally bounded, and upper
semi-continuous, and the function p — w(p) is continuous (and real valued).
For any (open) domain of prices over which Z*(p) is singleton valued, the
function p — z*(p) that is described by the correspondence is continuous.

Proof. This is a straightforward application of Berge’s Theorem, Proposition
A4.7, and its Corollary A4.8. The parameter 6 is the price vector, the variable



is the production plan z. The objective function is p -z, which is certainly
jointly continuous. The 4 correspondence—the large feasible set—is the
constant correspondence A(p) = Z. Being constant, this is certainly lower semi-
continuous. And the B correspondence—wherein all solutions are found—is
constructed as Bllows: Letting z° be any fixed element of Z (here is where the
nonemptiness of Z comes in), set Bp)={z € Z:p-z>p - 2%}, Of course, the
maximum profit over all of Z is the same as the maximum over B(p) for each p,
and B(p) contains Z*(p). And the lemma establishes that this correspondence is
locally bounded (hence so is Z*(p)) and upper semi-continuous. gy

9.4. Afriat’s Theorem for Firms

In the spirit of Affiat’s Theorem ( Chapter 4, remember?), suppose that you are
given a finite amount of data alleged to be a firm’s profit-maximizing production
choices. Specifically, for a finite list of price vectors, {p"; n =1, ..., N}, it is
alleged that z” is ““the” profit-maximizing choice of the firm at prices p”, forn =
1, ..., N. We put the in scare quotes here because we don’t preclude that there
are other profit-maximizing choices the firm might have made at the prices p".
The question is, Is there some production possibilities set Z that rationalizes
these data; that is, such that each z” is in Z, and 2" € arg max{p" -z : z € Z}
for each n? Compared to Afriat’s Theorem, the answer is remarkably simple in
this context.

Proposition 9.10.  Given a finite list of prices and production plans, {(p",
My n=1, ..., N} (where each p" € Rk and 2" € R¥), a set Z = R* exists

such that " € arg max{p" -z : z € Z} for each n if and only if
pre2" 2p* 2" foreachn,m=1,...,N. (9.1)
Moreover, if (9.1) holds, the set Z works if and only if it satisfies
{mn=1.. . . N}CIC{reRr:pr2<p" " n=1...N. (2

To paraphrase: The necessary and sufficient condition is that, for each listed



production plan z” and each price vector p”, the production planz" that is
alleged to be profit maximizing at prices p” must make at least as much profit at
prices p" as does z”. And the last part of the proposition says: To work, a
production-possibility set Z must contain at least all the listed production plans
and cannot contain any production plan z that, at any of the prices p”, makes a
greater profit than does z”.

If you think about it, this is obvious. First, (9.1) is necessary: For a Z to
exist, it certainly has to contain (at least) all the z”. And if at some price p”, it
is true that p” - Z" >p" -Z" for somez”, thenz” can hardly the be profit-
maximizing choice out of Z, which must contain z”, at the prices p”.

As for sufficiency of (9.1), suppose it holds. Let Z = {z"; n = 1, ..., N}.
The condition says that, for each n, p" - z" >p” -z for all m; hence " is a
profit-maximizing choice in this Z at the prices p". So this Z works.

Of course, no Z that works can be any smaller in the sense of set inclusion
than the set {z"; n =1, ..., N}. And as long as the set Z contains nothing that
gives greater profitat p” than z”, for each n, it will work. Ifit contains any plan z
that, for some n, gives greater profit at p” than does z”, then this Z will not
work. These two statements together give the right-hand set inclusion in (9.2).
(If we had been formal and written Proof at the start of this argument, we would
now conclude with an endproof mark.)

Recall that, in Afiiat’s Theorem for consumer choice, the continuity,
nondecreasing, and convexity of preferences were all untestable: If any preferences
rationalized a finite set of demand data, we would find continuous, strictly
increasing, and convex preferences that did so. The corresponding properties in
this context would be a Z that is closed, has free disposal, and is convex. We
might also wish to insist that the Z produced has the recession-cone property.

Proposition 9.11.  Suppose a finite set of prices and production-plan data
{@", 2");, n=1, ..., N} satisfies (9.1) and so can be rationalized as the choice
of a profit-maximizing firm in the sense of Proposition 9.10. Let



J?"f Jn‘
Ll e ge Zm-“‘::"".a” > D.Zﬂ”‘ =
n=1 n=1

(In words, f is everything that lies (weakly) below points in the convex hull
of the {Z"}.) Then f works—the data are consistent with the firm having
production possibility set f—and f is closed, convex, and satisfies the free-
disposal and the recession-cone properties. Moreover, f is the smallest (by

set inclusion) convex and free-disposal set that rationalizes the data.

Proof. To show that é works, we need to show that, for each n, p" - 2" >p”"

zPralz € . Butifz € 77, then » = N 71,772 where
E E = zm =1 O -
the o are nonnegative and sum to 1. So, since p” is strictly positive, p” - z <
P, a2 =Y, A" - 2" <Y, o (" - 2 (because (9.1) holds) = p”
Z". It is obvious that f satisfies the free-disposal property. It is easy (and left
to you) to show that é’ is convex. To see that f is closed, suppose that {z}
is a sequence from é’ that converges to some z,,; since each z; is ffom f, we
have z, < E ﬂ':?n w1  where for each/ the weights
S ™

{ﬂﬂ‘! . =1..... _,"'..-'} are nonnegative and sum to 1. Therefore, all

the weights lie in the unit interval, and by looking along a subsequence /', we
m T .
can assume that hmf,. - Qf exists for each m. Call this limit ;7 kg

then we know that these limits are all nonnegative and, by passing to the limit
along the subsequence in the equation E ﬁ? = 7. sum to one. But

then  because , < Eﬂ} ﬂmum’ we can again look along this

subsequence to conclude that . = E (™™ # ¥ | which means

I o0
that i
P



To show that E satisfies the recession-cone property: Let {z;} be a

sequence from éf whose norms diverge to infinity and such that z/||z]|

converges to some = I on the unit circle. Write 2= < E YT o TR
o -l f

where the sum on the rlght hand side is a convex combination ofthe z”. Let me

rewrite this as ¥, — '::-f + ﬁ'i‘f:li #TT | where (; < 0; then
- E?n ﬂlf T
zell |l ff” [z

Now as / goes to infinity, the term [ ﬂ__?'ﬂ' '”3] .-"l. | | %y || must go to

zero, because the norm of the numerator is bounded above by largest of the
norms of the z”” (use the triangle inequality and the fact that the weights are all
between zero and one for each /), while the denominator goes to infinity. So

-7 ﬁf

= limy —

el I2

and since the {; are all nonpositive, the latter limit must lie in the negative
orthant.

Finally, suppose Z is a set that contains {z”; m = 1, ..., N} and is convex
and has free disposal. Since Z is convex, it contains every convex combination
ofthe 2™, and since it has the free-disposal property, it contains every z less than
or equal to a convex combination of the z”. Therefore, Z must contain f; f

limg

is the smallest convex and free-disposal set that works. g

It is perhaps worth pointing out that the set on the right-hand side of (9.2),
{z€RF:p"-z<p" " Prn=1, .., N} is closed, convex, and has the fice-
disposal property (recall that each p” is strictly positive). But this set fils to
satisfy the recession-cone property.



The own-price effect for profit-maximizing firms

You might also recall fiom Chapter 4 the discussion of the own-price effect for
consumers, and the corresponding discussion of Gifen goods. For firms, once
again, things are much simpler. We start with a lemma.

Lemma 9.12. Supposez € Z*(p) and z' € Z*(p'). Then (p —p) - (z—z)>0.

Proof. Since z € Z*(p) and z' € Z*(p'), both z and z' are in Z. Therefore, p - z
>p-z'andp'-z'>p' -z Therefore,p -z+p'-z'2p-z'+p'-z,orp-z—p-
z'=p'z+p'-z'>20, whichis(p—p)-(z-2z)20. g

Corollary 9.13.  Consider a profit-maximizing firm and its response to two

price vectors, p and p', which differ only in the ith coordinate. That is,
I ~ . . I - . ~

JU" i EJ'. for j  #i. Suppose that i o P If z is a profit-

maximizing choice by the frm at prices p, while z' is a profit-maximizing

choice at p', then . = af
ot et

Proof. From the lemma, (p — p) - (z — z) > 0. By assumption, in (p — p"), the
only nonzero component is the ith, which is strictly positive. Hence z; >z, is
required ifthe dot product is to be nonnegative. gy

A bit of interpretation is in order. Suppose first that good i is an output of
the firm. The corollary then says that, as the price of output good i increases,
the firm’s profit-maximizing choice cannot be to decrease the amount of good i
it produces. To say a word more about this, fixing all prices but the price of
good i, let Z(p;) be the set of levels of output of good i consistent with profit

maximization and a price p; for good i. The correspondence p; = Z(p;) is then

the supply “function” of firm i, fixing all prices but the price of its output good

i. I’ve put scare quotes around “function” because, of course, this is really a

supply correspondence. What we’ve just seen is if
- £ 2 L

D > U % € 4, wd 2t € Z(p)), the

2, " ::“_r . Or, in words, a profit-maximizing firm$ supply *function”
, t

must be “upward sloping,” where now we have two sets of scare quotes, the



first because it is a correspondence, and and the second because we have no
justification for using the term “slope” at this level of generality. (If we knew
that it was a fanction—that each Z(p;) is singleton valued—would we know

that the finction described is continuous?)

On the other hand, suppose that good i is an input to the firm. Then the
corollary says that, as the price if input 7 increases, the (profit-maximizing) firm
will never increase the amount of this input that it uses. (Since inputs have
negative signs, % = ;‘;:_r for input i means that z; is less negative than :1':‘

it constitutes less of input i.)

9.5. From Profit Functions to Production-Possibility Sets

What we’ve done to this point in this chapter runs very much in parallel with
results for the theory of the consumer in Chapters 3 and 4. In Chapter 3, we
discuss the solution of the consumer’s problem using calculus and the theory of
constrained maximization, something we haven’t done here (and will not do).
But, except for that, we’ve replicated the results of Chapters 3 and 4.

Now we step off into territory we didn’t cover in the theory ofthe consumer.
(And, to foreshadow developments, this is territory we’ll cover for the consumer
in Chapters 10 and 11.) The plot line, overall, runs as follows. In the previous
section, we investigated what one concludes from a finite set of data about the
(alleged) activities of a profit-maximizing firm. Now we ask: Suppose you are
handed what is alleged to be the full set ofactivities ofa profit-maximizing firm.
That is, we are told what the firm will choose to do not for a finite set of price
vectors, but for every strictly positive price vector Are these alleged profit-
maximizing production plans really and truly the plans that would be selected
by a firm with some production-possibility set Z?

The proof of Proposition 9.10 suggests a simple answer. We’re being given,
for eachp € Rk , an alleged profit-maximizing production plan z*(p). For a
Z to exist that rationalizes this now infinite collection of data, we know that Z

must be at least {z*(p); pE Rk }. That is, every production plan that, it is

alleged, the firm chooses must be in any Z that rationalizes these choices.
Adding more things to Z only makes it harder for these choices to be profit
maximizing, so, as long as we aren’t concerned with free disposal or convexity,



why not stop with precisely this smallest possible set Z? Then we are fine, as
long as

p-2*@ =p-2*(p), forall p,p’ € Rf_.

That’s easy enough. However, it isn’t quite useful, since those are a lot of
conditions to check. We aim to find a condition that is easier to check in
practice. And that is really where we are headed.

To get there, let me give an alternative formulation to the question. Suppose
you are handed an alleged profit finction z. That is, for eachp € Rk , you

have a number z(p) that is alleged to be the profit earned by a firm that is
characterized by some unspecified Z. Is there some Z that generates this 7 and, i
so, what can you say about it?

This sounds like a lot less data than are contained in az*(p) fanction. And,
in fact, the profit function cannot provide any more information than you have in
a z*(p) function: If someone provides you with, for eachp € Rk , a

production plan z*(p) that is meant to be the optimal production plan for some
firm, you have also simultaneously been handed the profit function for this firm,
sincen(p) =p - z*(p). So it can’t be any easier to answer the question
formulated this way, and it probably seems a lot harder.

Next, recognize that we know a number ofnecessary conditions for a
candidate profit finction 7 : 7 must be convex, continuous, and homogeneous of
degree 1. Isit possible that these necessary conditions are also sufficient?
Perhaps suprisingly, they are.

Proposition 9.14.  Suppose 7 : Rk — R is convex and homogeneous of

degree 17 Let
T {:‘j = Rk P2 = _'.',‘U}:Ifﬂ'i"ﬂﬂ P e Ri;_}-

Then Z" is closed, convex, and has free disposal. And w is the profit function



or a firm with production-possibility set Z*,‘ hence Z" satisfies the recession-
P P! 'y
cone property.

Proof. Rewrite

= () {zr€R*:p-2 <n(@}.
peRE

This is the intersection of halfspaces, each of which is closed and convex, so
the intersection is closed and convex. To show that Z* has fice disposal,
suppose that z € Z" andz'<z. Sincez € Z, p -z <np) Preachp € R-"T s

and since z' <z and each p is strictly positive, p - z'<p - z <@(p) for each p €
Rk ; therebre z' € Z°.

What is leff? We need to show that, for each p* € RFF , there is some "
€ RF such that p* - =" = a(p") and p - 2" <a(p) orall p € JPk . This =" will

be a member of Z*, and since p* - z <z(p") for all z € Z" by definition, it will
be profit maximizing, producing profit n(p*), at p*. If we do this, we have
completed the proof Please note: At this point, we don’t even know that Z"is
nonempty. But we haven’t used the convexity and homogeneity of 7, yet. Now
we do.

Since 7 is convex and each p* € R-"f is in the interior of the domain of z,

there exists a subgradient of 7 at p*. (See Appendix 3 and, in particular, section
A3.6. The discussion there is about concave functions and supergradients, but
all the results there work for convex functions and subgradients.) Since 7 is
homogeneous of degree 1, its subgradients are linear functions (Proposition
A3.26); that is, there exists some z- € RF such thatp = 7(p) and p - "<
n(p) orall p € R . That’s what we needed to show.

The last conclusmn fllows ffom Proposition 9.7. g



Recall the second half of Proposition 9.3: For a given Z, p, and z* € Z, z*
is a subgradient of 7 at p ifand only ifz" € Z"(p). We said at the time that we
would like to drop the condition that z* € Z" and conclude simply that €
Z"(p) ifand only ifz" is a subgradient of 7 at p. But, for general Z, we cannot
do this, because the given Z may not be big enough. Since ZMisa subgradient
of m at p, adding it into Z" won't affect m at all. But we don't know, a priori,
that " is in the originally provided Z. 1 have emphasized the previous two
sentences, so don’t rush past them too quickly. To reiterate: To say that Zisa
subgradient ofz at p means that p’ -z <n(p') for all p'. Hence, ifz" is not a
member of Z already, adding it to Z does not increase the profit the firm can earn
at any price p'. Being a subgradient at p also means that p - = 7(p); z, upon
joining Z, will become a solution to the firm’s profit-maximization problem at
the price vector p. But it is possible (see Problem 9.1) that some subgradients
of 7 at some prices p are not members of Z, initially. This raises the question
that is the title ofthe next section.

9.6. How Many Production-Possibility Sets Give the Same Profit
Function?

The answer to this question involves the closure of the free-disposal convex

hull ofa set Z.

Definition 9.15. For any set Z < R, the firee-disposal convex hull of z, or
FDCH(Z), is the set

k.. - % ; 1
reRY 2 < Z(ku::” for nonnegative sealars o', .., 0"

i)



And the closure of the firee-disposal convex hull of z, or FDCH [Z} is
o F
the closure of FDCH(Z).

In words, take Z, take its convex hull and then take everything that is in or
below the convex hull, and you have FDCH(Z). Add in all the limit points of
this set, and you have FDC‘H EE:I It is obvious, I hope, that ifZ is

convex, closed, and has free disposal, then FDCH (Z:l =Z.
& '

With this concept in place, the answer to the title of this section is, almost,
Z and Z' give the s it function if and only if =
an give the same profit function if and only if FDCH (E:l :
I
FDCH(Z')
In one direction, this is exactly true.

Proposition 9.16. If FDOCH [Ej =FDCH (Ef], then Z and

Z' have the same profit function.

Remark. Before getting to the details of the proof, let me clarify the possibility
of infinite-valued profit functions: In this section, they are allowed. That is, we
will deal in this section with general production-possibility sets Z, with only
one restriction: Z must be nonempty. Once we know that Z is nonempty, we
know that its profit function z, defined for p € RFB as

m(p) =sup{p-2:2 € 7}

is never equal to —co. But unless we assume that Z is closed and has the
recession-cone property, we cannot rule out the possibilities (a) that, for a
particular p, the supremum is not attained by any z € Z, even ifz(p) < oo, and
(b) that, for a particular p, the supremum is +oo, in which case the supremum is
certainly not attained at anyz. I don’t wish to preclude either of these
possibilities, and proofs of this proposition and Proposition 9.17 are valid, even
if these possibilities are not precluded.



Compare with Proposition 9.14. The statement of that proposition begins
with a function 7 : R — R that is convex and homogeneous of degree 1. By

assumption, the range of  is the real line, not the extended real line (i.e., values
of o are ruled out by assumption), and so the Z" that is produced (which we
know is closed, convex, and has fiee disposal) must satisfy the recession-cone
property. It is interesting to speculate on what would happen if we had a
candidate profit finction z that was allowed to take on values of co; of course, i
we allow this, we’d better be clear what we mean by things like “convex” and
“homogeneous of degree 1.” We’ll get back to this, although a bit informally,
next section.

Proof. We prove this by showing that if 7 is the profit finction generated by a

set Z and ;"I‘— is the profit finction generated by FDCH [E:l ; then 7 = FI;

. This shows the result, since if this is true, and ifz’ is the profit finction

generated by some other Z’ such that FDCH [E:I .= FDCH (E.r]

, then ' = J"’I‘— =

Since Z & FDCH[Z} , it is clear that ;’I‘— > 7; maximizing over a
o F

larger set of production possibilities can only increase profits. So we are done if
we show that }"I‘— can never strictly exceed 7.

Suppose by way of contradiction that it does. That is, for some strictly

positive price p, J1"|‘—(p) > m(p). Then for somegE > 0, we can findz €

h that . > +E. B tinuit; f the dot

FDCH[Z},— suc] atp -z >m(p) + . By continuity of the do

product, we can find somez’ € FDCH(Z) close enough toz so that

Pz Fits -;I—[E_]} + g /3 Sincez’ € FDCH(Z), there is somez" €
¢

CH(Z) (the convex hull ofZ) such that z” >z’, which (since prices are strictly
positive) implies that P s TT{J'U‘} +¢e/2 Butz” is a convex

combination of elements of Z; write %' — zn‘ : d 23 , where each 7/
_i|=

€ Z and the scalars are nonnegative and sum to one. Since
n I i { .
Py = EJ.:: al(p-27) = m(p) +€/2, ad since

t heo are nonnegative and sum to one, for some index



_',i:; p- x3 ;I—u_]} + ,:_:;.-'gl Since thisZ is from Z, we have a

contradiction. pg
The converse is only almost true.

Proposition 9.17.  Suppose (nonempty) Z and Z' have different closed free-

disposal convex hulls; that is, FDCH [Z:I : * FDCH (Ef:] Then

either (a) they generate different profit functions, or (b) they both generate
profit functions that are identically +o.

Proof. Z generates the same profit function as does FDCH[Z) , and Z'
L s
generates the same profit function as does FDCH(E”], SO we can

rephrase this proposition as follows: If Z and Z' are closed, convex, and have free
disposal, and ifthey are not identical, then either (a) they generate different profit
functions or (b) they both generate the profit function that is identically +oo.
We’ll prove the proposition stated this way.

So suppose Z and Z' are both closed, convex, have free disposal, and are
different. Let 7 be the profit function for Z, and let 7’ be the profit fanction for Z".
Ifz =z’ and both are the constant function equal to +oo, there is nothing to
show, so suppose that one or the other ofthese functions is finite valued at some
price.

Since Z and Z' are different, there are points in one that are not in the other. I
need either

« apointz* € Z\ Z'and a strictly positive price j'j such that n’(ﬁ) < o0, or

« apoint z* € Z'\ Z and a strictly positive price jj such that z(ﬁ) < 0.

I claim that it must be possible to find Z" and jj that satisfy one or the

other (or both) of these joint conditions. Suppose Z & Z'. Then n(p) < z'(p) for
all strictly positive p. Of course, in this case, we can find az € Z'\Z. And
since either 7 or 7' is finite valued for some price j'j’ 7, being smaller, must be



finite valued for some ﬁ; that is, the second of the two bullet points holds. The

case Z' & Z is handled symmetrically, landing us in the condition of the first
bullet point. And if neither Z nor Z' is a subset of the other, then there are
points in either one not in the other one, and we pick the first or second bullet
point depending on which of z or 7’ is not identically co.

So, it is without loss of generality to assume that z" and ﬁ exist as in the
first bullet point: z"is in Z but not Z', and n'(jj) < oo,

Since Z'is convex and z” is not in Z', and since the set {z*} is compact, we
can strictly separate z* fom Z'. That is, we can find a vector g € RF and a
scalar b such that g - z< b <gq - " Prallz € Z' Since Z' has free disposal, ¢
must be nonnegative: Suppose g; < 0. Take any vector z € Z, and let dV be
the vector (0, 0, ..., 0, =N, 0, ..., 0), where the —N is in component i. Then z
+d¥ ez by free disposal, and g - (z + dN) =g +z —Ng; which, as N goes to
infinity, will certainly exceed any finite b.

Letd =q -z —b. Let £ > 0 be such that|Ep" . | o é.-f", and

n'(jj) <5/3, and then let p"‘ =q+ Eﬁ Note thatp* is strictly
positive. We have p* . »* —=
g2 +ep-2t >t —|eb-2*| > q-2*—0/3=b+24/3,
while for all z € Z

P or=q-2+ep-z<q-2+en’'(P) < b+8/3,

and so

)
TP =p*-2t>b+— > b+§ = 7' (p").

Hence the two profit fanctions are different at p”. g

This result gives us the fllowing corollary, which may be obvious but is
still worth stating explicitly.



Corollary 9.18.  Suppose that a production possibility set Z that lS‘ closed
and convex and has free disposal generates a profit function & : R — R.

Then if )
T {::- = R'ﬁ' o £ K- = Tr{p}fm'rxﬂ pe RT_}

Z" = Z. Moreover, Z = Z" is closure of the free-disposal convex hull of all the
subgradients of .

The proof is lefft for you to supply (it should be very quick and easy); it
basically consists of juxtaposing results already provided.
Propositions 9.16 and 9.17 would be so much nicer if we could simply say

that Z and Z’ have the same profit function if and only 1fFDC‘I_I [E:I =
FDCH(E-’] The caveat in Proposition 9.17 about them sharing the

profit function z(*) = o, even when FDO){(“H EE:' #FDCH (EI:I’

messes up an otherwise very pretty picture. It isn’t a hugely offensive mess, but
ifyou tracked the proofs closely, you may see a way around it.

We’ve defined the profit function z for strictly positive prices. Now enlarge
its domain, to be all positive (that is, nonnegative) prices. Define for any set Z

S RF the extended® profit function T : R{“ — R {J.,} by

ﬁzﬂ)j=5up{p. = Z}

I’'m subscripting 77 by the set Z that generates it as a notational convenience.
As is true throughout this section, I allow Tz to take on the value +oo. (I

assume throughout that Z is nonempty, so I don’t need to worry about the
value —o0.)

FDCI—I(E’ if and only if 7 ;= TF -



That is, allowing nonnegative (as opposed to only strictly positive) prices gets
us the no-mess result. It is a bit of an abuse of language to call this a corollary,
but it does follow fairly easily ffom the proofs of Propositions 9.16 and 9.17. I
you aren’t sure why, see Problem 9.7.

9.7. What Is Going On Here, Mathematically?

(You may skip this section ifthe mathematics is getting too thick for you, but i
you want to understand what just happened, you should persevere.)

Except for the little bit of mess that is cleaned up by Corollary 9.18,
Propositions 9.16 and 9.17 establish a one-to-one relationship between closed,
convex, free-disposal production-possibility sets (or the equivalence classes of
production-possibility sets that share the same FDCH IS) and their profit

fanctions. That there should be this one-to-one relationship may seem fuzzy to
you, in which case consider the ©llowing.

Section 3 of Appendix 3 provides a fairly intuitive mathematical result, the
Support-Function Theorem, which says that a closed and convex set Z < RF
that is not all of R is the intersection of all the closed halfspaces that contain
it. Once you have a good feel for separating-hyperplane theorems, it isn’t hard to
see why this should be: If :i: is any point not in Z, we can strictly separate :i:
from Z with a hyperplane, so :i: won’t be in the intersection of all the closed
halfspaces that contain Z. And, of course, Z is in that intersection.

But now write out in symbols “the intersection of all the closed halfspaces
that contain Z”: A halfspace is a set ofthe form {z € R 1 p -z <f} for somep
€ Rf and f € R. Don’t be confused here by the use of p; now we have no sign
restrictions on the components of p. And the halfspace {z € RF ip z <p}

contains Z if and only if sup {p 'z :z € Z} <pB. So if we define

fz i RF — R {nc}
Tz(p)=sup{p-2:2 € Z}, (9.3)

we know that Z is contained within the closed sub-space defined by p and £ if
and only if;‘l'—z u_]} = -'-j’,r and the Support-Function Theorem says that



&= n {zeRF:p.2< ).
pER* B2 % z(p)

Moreover, in that big intersection, we can limit ourselves to one value of § for
each value of p, namely .'J] £ J"I-_Z (p) A since the halfspace with any larger

f is a strict superset of the halfspace with this specific 5. In other words, for this
wonderful finction =, the Support-Function Theorem says that For any

closed and convex set Z,

7= ﬂ R pr iy = (e RS ipor <hy00) forallp e B 04)
pERE

Therefore, there is a one-to-one correspondence between each closed and
convex set Z in R* and its respective support function =z, where the function

T = defined in (9.3) has been given its mathematical name, the support

fanction.

This is nearly identical to what went on in the previous two sections, except
that the profit function is defined only for strictly positive prices, and instead of
getting a correspondence between closed and convex sets and their support
functions, we (almost) got a correspondence between closed, convex, and free-
disposal sets and their profit finctions. But please note: A support function is
defined precisely the way a profit function is defined, except for a larger domain
(allp € R¥ instead of strictly positive p), and recovering Z from its support
function via (9.4) should look awfully familiar to you after reading earlier
sections of this chapter.

But there are more parallels. You should have no problem proving the
following result, if you understood the proofs of the previous two sections.

Proposition 9.20.
a. Suppose Z and Z' are arbitrary sets in RE. Then ﬂ—z = ﬁ—z ; if and

only lfﬁ(z} e ﬁ(j -’*:I . where ﬁ(fj is the closure of



the convex hull of Z.
b.  Suppose Z is closed and convex. The support function of Z, ﬁ‘z , is

finite valued for all p € RF if and only if Z is compact. And, in this case,
T = is convex and homogeneous of degree 1.

c.  Suppose Jr: RY — R is convex and homogeneous of degree 1. Then it is
the support function of the closed and convex set Z defined by (9.4), which
is (of course) compact.

I leave the proofofthis proposition for you (as Problem 9.9).
But now to dig still deeper, I assert that even ifﬂ‘z is not finite valued

for all p, itis still convex and homogenous of degree 1, if you define convexity
and homogeneity appropriately (see Problem 9.10). Moreover, for any extended
real-valued function 4 on R” that is convex and homogeneous of degree 1, the

set {p € RF : F(p) < o} is a convex cone. Call this convex cone Pﬁf . and

introduce another set,

Zt={2eR*:p-2<0forallp e P;}.

This set is also a convex cone; it is called the negative conjugate cone to P ’

Why look at these sets? Go back to the construction ofZ from 3 I via (9 4),
which is

Z={2eR*:p.2 < it(p)forallp e R*}.

fp & Pﬁ: , then F(p) = oo, and p - z < 5(p) for this p is no constraint at
all on z. Hence we can rewrite our definition of Z as

Z={2eRF:p.2 < #(p)forallpe P}

Moreover, suppose ;:"‘ -2 Z:f' andz € Z. I assert that, automatically, z +
) *



5

z IS4 : For every
pPEPL, p-(z+2")=p-2+p-2" <p.z, s ifz
satisfies the constraints, so does z + 2 I words, the set Z explodes out in
directions given by the cone ;"_ ]

Suppose, for instance, that _P‘:;_‘ = R-:f That is, #(p) = o, oris
T ++ "

thought of as being equal to «, for all vectors p that are not strictly positive.
Then E_;_ is the negative orthant. That, pretty much, is the story for the profit

function. We only look at strictly positive price vectors, so we generate no
constraints on z for p outside of the strict positive orthant, and the sets Z we
generate explode out in the direction of the negative orthant; in other words, we
get free disposal.

Suppose then that we had a profit function z that had infinite value for some
strictly positive prices. Its set of prices-for-which-z -is-finite is still a convex
cone (as long as 7 is convex and homogeneous of degree 1), and when we go
looking for the corresponding Z, we’ll explode out in directions 7" that are
more than just the negative orthant; that is, we get free disposal plus.

There’s a quite general theory lurking here, but I'm not going to develop it
any further. To do justice to it would take an already long excursion away from
the main lines of this chapter and make it very much too long. I hope this gives
you either enough ofa lead to do it on your own or enough ofa taste for you to
seek out the general theory. If you do seek out the general theory, look for
conjugate convex functions and Fenchel duality.

9.8. Differentiability of the Profit Function

We know that if 7 is a profit function and z € Z*(p) for some p, thenz is a
subgradient of r at this p. If 7 is diferentiable at p, it has a unique subgradient,
namely its derivative, and so Z*(p) must be the singleton set consisting of this
derivative. This not-very-remarkable result will in fact prove to be quite useful
(for instance, when we get to producer surplus in Chapter 12), and so has a
name:

Corollary 9.21 (The Derivative Property, or Hotelling’s Lemma). Suppose



the profit function w is continuously differentiable at price p* and suppose that
Z is closed.” Then Z*(p*) is a singleton set consisting of the netput vector
2 (p") whose ith component o P U}' }

e o
:1. @] } = .

Op; | o

We can harvest one relatively quick and somewhat surprising corollary ffom this
immediately. Suppose that, for whatever reason, we know that 7 is not only
continuously diferentiable, but twice continuously diferentiable in some open
region of prices. Hotelling’s Lemma then implies that the optimal production
plans of the firm, in that neighborhood of prices, can be written as a function
z*(p). We already know that this function is continuous (How? Berge’s
Theorem), but now we know that it is continuously diferentiable. And since the
second partial derivatives of any twice-continuously differentiable function are
symmetric, we know that

P az* O

i 1

Ip;0p; T dp ;o Op;

Think ofi and j as two different inputs to the production process. This says that
the rate at which the firm (optimally) changes its use of input i, as the price of
input j changes, exactly equals the rate at which the firm changes its use of input
J, as the price of input i changes. We’re not just saying that the changes have
the same sign. We’re saying that the numerical rates of change are identical!

All very nice, but this is premised on smoothness ofz. Is there any reason
to believe that the profit function is diferentiable, let alone twice continuously
diferentiable? Setting aside the harder question of two continuous derivatives
momentarily, we see in the next proposition that the question about the first
derivative of 7 has a simple answer.



Proposition 9.22. The profit function xis differentiable at a price p° if and
only ifZ*(pO) is singleton, in which case the gradient of m at p° is the single
element QfZ*(pO).

Proof. We already have one direction: Ifthe profit fanction is difierentiable at p°,
then Z*(po) is singleton, and the gradient ofz is the single element on*(pO).
We need to show the converse. So suppose Z*(po) is contains a single element,
which we denote by z°.

Suppose we have some sequence of price vectors {p"} with limit po. Write
each p" as pﬂ + g™ Let 2" be any element of Z*(p") (I assume there are

solutions in at least an open neighborhood of p®), and write 2" = z0 + 6”. From
Proposition 9.9 and the fact that Z*(po) is singleton, we know that {z"} has
limit z° or, equivalently, {6"} approaches zero as n approaches c: Because p =

Z*(p) is locally bounded, the sequence {z"} lives inside a bounded set. Hence
every subsequence has a convergent sub-subsequence, and upper semi-continuity

tells us that the limit of every convergent subsequence must be 20, This implies
that the limit of {z"} exists and is z°.

To show differentiability at pO (and that the derivative is zo), we must show
that

T Ji_ru_ JI\_U.::U }[”—G.,jﬂ—”.;:‘
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We have

F(pr) :pn.:n - (p“—t‘”)-(::jJrJ”):pG-:‘;'°+e"-::3+p0-r5” ‘|'<".n'6n,'

substituting this into the numerator in the previous display, we must show that
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To show this, we enlist two inequalities:

10" ="+ P+ 22" or P+ 20, and

@) =p"- 220 =g (40" or 029

Putting these two together, we have

4| o - S (9.0)
So ifwe show that

: Eﬂ- 5 Gﬂ-
lim,, ..——— =0,
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then we are done; the other term in (9.5) is clearly being driven to zero because
of (9.6). And Berge s Theorem ensures that this last limit is true: Coordinate
by coordinate, & ||,5“3 || is bounded above by 1 by the triangle inequality,

while G.:"" goes to zero by Berge. g

The profit function, then, is difrentiable at p° if and only ifZ"(p°) is
singleton. What does it take for this to be true? Referring back to Proposition
9.5, we need that Z is “strictly convex” in the sense of that proposition. (The
scare quotes around strictly convex are certainly merited, since Z doesn’t even
have to be convex in areas where profit-maximizing production plans will not be
found.) Conversely, if Z is not “strictly convex” in the sense of Proposition 9.5



—if there arez and z’ on the northeast boundary ofZ, such that all convex
combinations of z and z' are on the northeast boundary of Z—then prices can be
found so that z and z' and all the convex combinations between them that are in
Z are profit maximizing, and then we know that (at least) z and z’ are in Z"at
those prices, and they and all their convex combinations will be subgradients of
7 at those prices. (Depending on Z, some of the convex combinations ofz and z'
will not be in Z* at the prices in question. But all convex combinations will be
subgradients ofz at these prices. Be sure you understand this distinction.)
Therefore, 7 will not be differentiable at those prices.

Suppose we know that 7 is differentiable on some open set of prices; hence
Z"is singleton for those prices, and we can write z*(p) for the function that gives
the optimal netput vector as a function of prices. What (more) does it take to
conclude that these optimal netput functions are differentiable? 1 will not give
the answer here, prefering to reserve this discussion for Chapter 11, where we’ll
discuss the issue in the context of the theory of the consumer. But, anticipating
what we’ll say there, suppose one is able to describe the production technology
in ways (typically, with production functions, which you may recall from
intermediate microeconomics) that permit a solution of the firm’s profit-
maximization problem as a constrained maximization problem. Suppose there is
enough convexity so that solutions to the first-order, complementary-slackness
conditions are certain to be solutions of the profit-maximization problem. Then
(with some technical conditions met) those first-order, complementary-slackness
conditions implicitly define the optimal netput functions, and you can think of
using the Implicit-Function Theorem to prove that the optimal netput functions
are differentiable. However, where nonnegativity constraints (on the amount of
an input being used, on the amount of a particular output being produced for
sale) go ffom binding to no-binding, diferentiability of the optimal netput
functions will usually be lost. (And if you want to see what all this means, wait
for the discussion in Chapter 11.)

Some practical criteria

So, to sum up, if someone hands you a function 7 : Rk — R and asserts that

it is the profit function for a firm that has some Z and maximizes profits, you
test whether 7 is indeed a profit function by asking: Is # homogeneous of degree



1? Is w convex? If the answer is yes to both questions, then z is a profit
function. (Remember, continuity ofz is superfluous, since it follows from the
convexity ofz.) Moreover, you have a machine for resurrecting ffom 7 its Z or,
rather, the closure of the free-disposal convex hull of the original Z. Ifz is
diffrentiable (and Z is closed), Z"(p) will be singleton at cach p, with the
gradient ofz atp being the optimal netput vector atp. More generally,
subgradients of 7 at p are elements on*(p) or, rather, elements OfZ*(p) if the
original Z is convex, closed, and has fiee disposal.

And if someone hands you a vector-valued function & Rk — RF and

asserts that it is the optimal netput function for a profit-maximizing firm, you

construct the implicit profit finction 7 by setting z(p) = p - z*(p) for each p and
proceed as above.

That summarizes the theory of the situation. But checking on convexity on
first principles can be difficult. Happily, if you have sufficient differentiability,
some simple criteria are available: If someone hands you a candidate profit
function z that is twice-differentiable, you have to check that it is homogeneous
ofdegree 1 and that the matrix of mixed second partials, whose ij th term is

P
¥} n,dp 4
is positive semi-definite. While if someone hands you a candidate optimal

netput (vector) function ", you must check that these functions are all
homogeneous of degree 0 and that the Jacobian matrix whose ij th term is

5‘ i
dp;

is symmetric and positive semi-definite.

9.9. Cost Minimiztion and Input-Requirement Sets



This chapter has (so far) concerned the firm’s profit-maximization problem. We
specify the capabilities of the firm by a production-possibility set Z and then,
given prices, find the optimal (profit-maximizing) levels of inputs and outputs
simultaneously. A related treatment of the firm begins by assuming a clear
distinction between the firm’s inputs and outputs. Technological capabilities are
given by so-called input-requirement sets, which tell us, for a given vector of
outputs, what combinations of input are sufficient to obtain those outputs. And
the problem studied is the firm’s cost-minimization problem: For each vector of
outputs and given prices for the inputs, what is the least-cost method for
producing the specific output vector? One reason for studying this problem is
that, while it may be hard to swallow the assumption that the firm is a price
taker in its outputs, it is more reasonable to assume that its activities have no
impact on the prices of its inputs.

In some ways, the firm’s cost-minimization problem is simpler than its
profit-maximization problem; for one thing, the required compactness
assumptions arise very naturally (once strictly positive prices for inputs are
fixed). In other ways, the story becomes more complex; in the firm’s profit-
maximization problem, prices are the only parameters and (so) the feasible set
doesn’t shiff with changes in parameters; now prices of inputs and the level of
outputs enter as parameters, and a shiff in the level of outputs changes the
feasible set over which the firm is optimizing. It turns out, moreover, that the
cost-minimization problem shares a lot of mathematical structure with the
consumer’s expenditure-minimization problem (also known as the dual
consumer’s problem), the subject of next chapter. So in this section, we will
give some results about the firm’s cost-miminimization problem. But we won’t
be complete, and all the proofs are left as exercises for you. (Many of the proofs
are provided in the Guide.) With regard to the incompleteness of results, you
may want to take up the challenge of filling in the gaps. But if you do, it may
be best to wait until you have finished Chapter 10.

Firms with fixed inputs and output, and input-requirement sets

Suppose for a firm (whose production-possibility set is denoted by Z & Rk), the
k commodities are divided into inputs, outputs, and no-puts. Specifically, there
are m possible outputs of the firm, and » inputs, with the first set disjoint fom
the second and with n + m < k. Assume for convenience that commodity labels



are ordered so that the first m components of a netput vector z are the outputs of
the firm, and the next n are inputs, and write z = (v, —x, 0) forz € Z, where
Iy e J{™ is an output vector and * &= JP"™ is an input vector The

following assumptions are always made:

Ifz=@, —x w) €Zwherey ER", —x ER" and w € Rk=m=n
then x>0, w < 0, and, if we write y* for the positive part of y (that
is, 'E|I',._ = ?nﬂ-ﬁ-'{ [F 0 } jl, = max{y;, 0}), then (¥, —x, 0) € Z.

The explanation is: The middle » coordinates are inputs for the firm, and they
must be nonpositive in a netput vector z. The final K — m — n coordinates are
neither inputs nor outputs; to allow the firm to have free disposal, we allow it to
dispose of some of these commodities (hence w < 0), but this disposal is
inessential to the firm’s actual production processes (hence we can replace w
with 0 in these coordinates and still be feasible). And the first m coordinates are
outputs: These are the only coordinates that can take on strictly positive values.
Again to allow for free disposal in Z, we allow these coordinates to have
negative values. But these are never net inputs to the firm’s actual production
process, and so if we replace any negative coordinate among these first m with
zero, we remain feasible.

It goes almost without saying that, as long as prices are nonnegative and
this assumption holds, the firm would never choose a production planz in
which one of the first m or the final £ — m — n coordinates are negative. So we
can (and do) restrict our attention to that subset of Z where z has the form (y, —x,
0), where y and x are both nonnegative. Let ér be the subset of the firm’s Z of

vectors of this form. Let ¥ denote the subset of J§7" such that y € Y if (v, —x,
+

0) € f for some r & R”: ; that is, Y is the set of feasible output vectors

for the firm. And, for ach let

‘[_ {u.} — {.I e RJ‘:- . I:.u —, D) = f}_ Foragzven output

vector y, the set V (y) is called the input-requirement set for y.
Under the assumptions made, ér can be reconstructed from Y and, for each y



€ Y, V(). (Alternatively, one can specify a V (y) for all T m"}I where

V) = [E| if the firm is incapable of producing output vector y.) So instead of

specifying the firm’s production possibilities by Z (or f), one can begin with
Y and the V (y).

What properties of Y and the ¥ (y) correspond to the properties of Z given at

the start of this chapter? Because the input-requirement sets tell us nothing
about the structure of Z away flom ér we will have to adapt some of the

properties of Z to E’r But with that caveat, we have the llowing result:

Proposition 9.23.

a.

Z has no free production if and only if 0 € V (y) for all y such that y >0
and y #0.

Z has the ability to shut down (0 € Z) if and only if 0 € Yand 0 € V
(0).

If Z has free disposal, then each V (y) i s comprehensive upward,
meaning that if x € V (y) and x' > x, then x' € V (y). But the converse is
not true. Instead, f exhibits free disposal (if (v, —x, 0) € f and 0 <y'
<y x’ 2x, then (y), —x', 0) € f if and only if y € Y and 0 <y' <y
implies y' € Y, each V (y) is comprehensive upward, and the V (y) sets
nest in the sense that if y, y' € Y are such that y >y, then V(y) S V ().
If Z is convex, then each V (y) is convex. But each V (y) can be convex and
f is not. Instead, é" is convex if and only if Y is convex and, for all y,
VEY,xE V), andx € V() and for all a € [0, 1], ox + (1 — a)'
€ V(w+ (- apy).

The correspondencey = V (y) is upper semi-continuous if and only if f
is closed. As a corollary, if f is closed, then each V (y) is closed. But Y

may not be closed, even if f is closed.

Proofs of parts of this proposition amount to little more than restating or
rearranging definitions. But other parts have some substance, and examples that



illustrate the negative statements are worth seeing. See Problem 9.11 and its
solution in the Student’s Guide for more on this.

The increasing/decreasing/constant returns to scale properties can be
formulated in terms of input-requriement sets, but only in ways that, essentially,
translate the old properties into the new context. So they are not interesting.
The recession-cone property is also not of interest in this context, but for a very
different reason: Once attention moves ffom Z to the ¥ sets, maximizing overall
profit gives way to minimizing cost and, as you will see momentarily, existence
of a solution to the cost-minimization problem is never an issue if prices of
inputs are strictly positive.

Cost minimization for a fixed level of output
Now we introduce prices for the inputs. Inputs are also called factors of
production, and prices for them are often called factor prices. Regardless of the
name, they are denoted by r € R T : note that we are looking only at strictly
positive prices for the inputs.

Fixing some y € Y and prices r for the inputs, the firm’s cost-minimization
problem is to

Minimize r - x, subject to x € V().

We can write V’*()g r) for the set of solutions to this problem and C(y r) for
inf{lr -x :x €V (y)}; C is called the cost function. Throughout this
subsection, y will be fixed, and we’ll abbreviate with V*(r) and C(r). Note that
since y € Y, V (y) is nonempty, and hence C(r) < oo for each r.

Proposition 9.24.
a. C(r)=0forallr € ™.

b. If V (y)is closed, a solution to this problem exists for every r € R”‘ .

If V() is a convex set, V'(r) is convex for each r.

LN

The cost function r — C(r) is concave.
e. The cost function C is homogeneous of degree I in r.

Ifx € V*(r) (for fixed y), then x is a supergradient of C at r. Conversely,

~



if x € V(y) is a supergradient of C at r, then x € V*(r).
g . (Berge’s Theorem) For fixed y if V (v) is closed, then r — C(r) is
continuous and r = V*(r) is nonempty valued and upper semi-continuous.

For X c R”‘, let

L
CCH(X)={re R* : = > ¥, opxt,
nonnegative scalars a,, ..., a; that sum to one, and xl, e ¥ e X} . And

let C‘{:‘H( T{:I be the closure of CCH(X). Then the cost function

associated with X—that is, C(r)=inf{r - x: x € X} forr € R”‘ —is

the same as the cost function associated with CCH( T{ :l Ther.efbre,

U’C{:‘H( Yj = CCH( T{-'] then X and X' have the same cost
L i , ; _ -

Sfunction. Conversely, if CCH(.Y:I # CCH{}{.’L then X and

X' have different cost functions.

Suppose that C : R " R, is concave and homogeneous of degree I.

Define
X={zeR:r.z> C(r) forallr € R, }.

Then X is closed, convex, and comprehensive upwards, and for every r €

Rk , C(r)=min{r - x: x € X}.

(Hotelling’s Lemma) The cost function C(r) is differentiable (in r) in an
open neighborhood of 0 if and only if the firm$§ cost-minimization
problem has a unique solution for each r in that neighborhood, in which
case the vector whose ith component is 0C/Or—that is, the gradient of
C—is the solution of the cost-minimization problem at each r. Moreover,
if the solution is unique in an open neighborhood of 0 and, writing x(r)
for the solution (in [§") as a function of 1, if this (vector-valued)

function is differentiable, then
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That is, the rate of change in factor i per unit change in price of factor j
exactly equals the rate of change in factor j per unit change in the price of
Jfactor i.

The proof of all parts of this proposition except part j is leff as an exercise
(Problem 9.12) for you; or see the solution to the problem in the Guide. Parts a
through fare all fairly straightforward, but g, h, and i are good tests of whether
you understood the details ofthe proof§ in this chapter.

Note that, in parts h and i, the generic set X is a stand-in for an input-
requirement set ¥ (y). Paraphrasing the two parts, the cost finction can be used
to recover ¥ (y) up to the closure of the comprehensive convex hull of V' ().
Two input-requirement sets with the same closures of their comprehensive
convex hulls give the same cost function; if two input-requirement sets have
different closures of their comprehensive convex hulls, they have different cost
functions. And a candidate for a cost function (for a single output vector) is in
fact a cost function for some input-requirement set, as long as it is nonnegative
valued, concave, and homogeneous of degree 1.

Part j is easily proved if you understand the proof of Proposition 9.22, and
so I omit it. The final pieces of part j have as premise that the solutions are
differentiable in r; conditions that would guarantee this are developed in the
context of consumer problems in Chapter 11. Otherwise, the symmetry of the
partial derivatives derives ffom the fact that, under the conditions given,

ory  &PC o
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Since C is concave in r, the matrix of these mixed second partials (assuming
they exist) must be negative semi-definite.

The proposition does not provide the Affiat’s Theorem analogue for input-
requirement sets. That is relatively simple (for a single output level) and is left



entirely to you.

Cost functions with varying output levels

Now we ask: What can be said about C(y, r) as a function jointly of the target
output vector y and input prices »?

If we are looking for properties such as convexity of C iny, it will take
further assumptions on how the ¥ (y) knit together Problem 9.14 asks you (in
open-ended fashion) to see if you can find such conditions.

It is natural to suppose that the /' () nest. There are a variety of ways to
formalize this, of varying strength. For instance:

» Say that the V (y) satisfy weak nesting (or simply nesting) ify > y" implies V
) S V(). (In words, to produce less output, you can get by with just as
much input.)

* And say that the V' (y) satisfy strong nesting if they satisfy weak nesting
and, in addition, y >’ y #)/, and x € V (y) imply that, for some x' <x, x'
#x, we have x’ € V (3). In words, to produce (somewhat) less output, you
can get by with (somewhat) less input.

Proposition 9.25.  Suppose y and y', both in y; satisfy y >y, y #y. If the
input-requirement sets satisfy weak nesting, then C(y, r) > C(', r) for all r.
And if the input-requirement sets are closed and satisfy strong nesting, then

C@y, r)>CQ), r).

The proof of the first part is very easy: The infinimum taken over a smaller set
(over V (p)) is necessarily as least as large as the infimum taken over a larger set
(V (). The second part is nearly as easy: Fix somer € Rk IV () is

closed, let x be any element ofV'*(y, r). By assumption, there is some x" € V
(v) that is <x and #x, and at strictly positive prices, C(), ) <r - x'<r -x =
Cy, r).

We’d like C to be continuous in y and . The obvious vehicle for obtaining
this is Berge’s Theorem. But assuming that the ‘f corresponding to V (p) is

closed won’t be sufficient: This only tells us that y = V (y) is upper semi-
continuous; to apply Berge, we need that y = V (y) is lower semi-continuous



(and that there is a locally bounded and upper semi-continuous sub-
correspondence with all the requisite properties, but we’re able to manufacture
such a subcorrespondence in the proof, under the right conditions). This is not
merely a lack of imagination on our part; we really need something more than
that the corresponding 2" is closed. To see why, consider the following simple

example: m = n = 1, so there is one input good and one output. Suppose

[, o0), fory <1, and

Viy) =
: [y +1.00), fory=>1.

(If the picture isn’t immediately clear to you, graph the corresponding Z,
assuming free disposal; a graph will be given in the Guide. The graph makes it
clear that this y = V (y) is indeed upper semi-continuous.) Assuming the input
good has price r, we get

rY, fory <1, and

C{ i, 'J"':I —
: r(y+1), forr > 1.

This is, of course, discontinuous in y at y = 1. It is lower semi-continuous, and
we can (in fact) settle for that (if we are not willing to assume more than y = V
(v) is upper semi-continuous). Or we can assume that y = 7 (p) is continuous,
and get the desired continuity:

Proposition 9.26. Suppose that the input-requirement sets (weakly) nest. Let
Y’ denote {y € Y : There exists some y' € Y that is strictly greater than y} . If
y =V (v) is upper semi-continuous, then (y, r) — C(y r) is lower semi-
continuous on Y° x R:}_ Ify = V (y)is continuous, then (y; r) — C(y r) is

. * . . .
continuous and the correspondence (v, r) = V' (y; r) is upper semi-continuous
onY x fim.

=

Restricting attention to Y’ is done for analytical convenience in the proof, other



situations can be dealt with, but I’ve given the result in a form that permits a
particular approach to the proof (See Problem 9.23 and its solution in the
Student$ Guide for details.) I won’t go any further with this development,
except to leave you with two challenges, which are probably best pondered affer
you have consumed Chapter 10.

Ifyou assume that the 7 (y) nest in the sense of Proposition 9.26, the lower
semi-continuity of y = ¥ (y) is analogous to local insatiability. Recall what
lower semi-continuity says: Ifx € ¥ (y) and {)/"} is a sequence with limit y,
then we can produce a sequence {xX’} with limit x, where X" € V (/). In
view of the nesting assumption, producing such a sequence is most difficult
ifthe )" approach y from above. The Bllowing property then is equivalent to
lower semi-continuity (on Y, at least): Ifx € V (y), then in any
neighborhood ofx, however small, we can find an x" and a )’ wherex' € V
(v") and )’ is strictly larger (larger in every component) than y. How is this
akin to local insatiability? Think ofy as the utility level and x as the
consumption bundle. The key here is that y’ must be strictly larger than y;
in the case oflocal insatiability, since there is only one dimension to utility,
larger means strictly larger. Challenge number 1: Can you make everything
just stated exact?

Suppose a candidate cost fanction C with domain J§™ x ™ s

nonnegative valued, concave and homogeneous of degree 1 inr,
nondecreasing in y, and jointly continuous in (y, r). If for each y, we define
V) :={x€ F™:r-x>C@ r)prallr € J§™ }, then we know fiom

Proposition 9.24i that each V () is closed, convex, and comprehensive
upwards and, for every r € Rk ,C, )=min{r -x :x € V(»)}. It is

relatively easy to show that these 7 (y) sets nest. Challenge number 2: Is y
= V (v) a continuous correspondence?

9.10. Why Do We Care?

The bulk of this chapter has been about the connections between a firm’s
production technology, modeled by the production-possibility set Z, and its
profit function z. Simplifying drastically, there is a one-to-one correspondence



between production-possibility sets Z and profit functions z, where the many
propositions we’ve developed make exact what is the real one-to-one
cotrespondence.

Why do we care about this? The answer to this question takes us ffom the
world of higher economic theory to more applied concerns, both theoretical and
empirical. In terms of more applied theory, economists are ofien concerned with
so-called comparative statics exercises; in the current context, this would mean
asking and answering questions about how the maximizing decisions of a firm
change as parameters of the firm’s environment change. Knowing (directly) what
is the class of optimal netput functions of the firm makes such results
immediately available. And if we want to study data generated by a real firm, we
may be lucky enough to be able to identify important aspects of the firm’s
technology and to obtain data that allow us to estimate that technology. But in
many cases, the data available are economic and not technological in nature: We
know that, facing one set of prices, the firm chose z; facing a second set of
prices, it chose z’, and so forth. The results that make up the bulk ofthis chapter
tell us that economic data of these sorts identify (to some extent) the underlying
technology of the firm, under the maintained hypothesis that the firm maximizes
profit, taking prices as given. (Since for many firms the price of outputs is not
given—that is, the firms have market power over their output prices—for many
empirical purposes, the more useful version of this sort of thing is the theory of
the cost function, in Section 9.9.) The next step, then, is to blend this
theoretical development with empirical concerns, which offen means identifying
functional forms for the economic data we are likely to have—functional forms
that permit estimation—and the corresponding technologies. Diewert (1974) and
Fuss and McFadden (1978) are good places to begin your study of such matters.

Bibliographic Notes

The theory ofthe competitive, profit-maximizing firm is in some sense the poor
relation of the theory of the utility-maximizing consumer in the literature of
economics; not because it isn’t important, but because it is, in comparison,
relatively simple. Being simple, there isn’t a lot to say, and what there is, is
straightforward. (If this didn’t seem straightforward to you, wait until you have
finished Chapters 10 and 11!) But the theory is only the precursor to
applications, and the chapter by Diewert and book by Fuss and McFadden just



cited will begin to show how rich is the subject. These are also good, classic
references to the theory developed here (in Fuss and McFadden, see Chapter 1),
and both the article and the introduction to the book contain sketches of the
history of thought on this topic.

Problems

m 1. (a) On page 203, I suggest that you look at the example k = 2 and Z =
{(—1, 1), (-3, 2), (0, 0)}. What is z in this example? What is the connection
between this example and the discussion there? What does the sort of in that
discussion mean, precisely?

(b) Provide the (simple) proof of Corollary 9.18. How does this connect with
part a of this problem?

m *2. It is sometimes usefill to know that 0 € Z; a firm has the ability to shut
down. Suppose you are given the profit function 7 associated with some Z. To
what extent does z alone tell you whether 0 is or is not a member of Z? (I am
leaving this question somewhat open-ended; the challenge for you is to say as
much as you can about whether 0 € Z, based on knowledge ofz. To avoid
complications, assume that 7 is real valued.)

m 3. When we proved Berge’s Theorem for the firm’s profit-maximization
problem, we assumed the recession-cone property, so that z(p) < oo forall p €
Rk . But suppose that 7 is infinite valued for some price vectors and finite for

others. Suppose that, in such a case, we know that z(p) < oo for all p in an open
neighborhood of some pricepo. Assume that Z is closed. Does Berge’s
Theorem work locally near p*? Is p = Z*(p) upper semi-continuous, and is p
— 7(p) continuous, for all p in some (possibly smaller) open neighborhood of
%

| *4. Suppose that a firm has a production-possibility set Z that is closed and
nonempty and has the recession-cone property. Focus attention on good 1, by
fixing strictly positive prices p,, p3, ..., p; for all the other goods, and let



El' U)lj be the set of values ofz; such that z; is part of a profit-maximizing
production plan for the firm at prices (p, p,, ..., py); that is, #.* u_}l) is the

projection along coordinate 1 on*(pl, Pos +ees Dy)s OF
Z3 () = { € R: There exist (z,...,2;) € R*~ such that
Y . ~ ri
[:5'1' Aedyx i)y R) € Z (pl- R pk)}"

Suppose that, for some open interval of prices for good 1, say,
m e {El.p-l:ll, we know that zl"' U’ilj is a singleton set, say,
{z1())}. For p; in this interval, is z|(-) a continuous function? (Hint: How is
this connected to Corollary A4.8?)

m 5. Production-possibility set Z is said to be additive if it has the property
that ifz and z' are both in Z, then so is z + z'. The idea is: If the firm can do z
and can do z', then by setting up separate operations, it can do both z and z".

(@) Show by example that additivity neither implies nor is implied by
increasing returns to scale.

(b) Suppose Z is additive. What can you say about its profit finction z?

m 6. Proposition 9.10 concems a finite set of price-and-production-plan data
that is meant to come from a single Z. Suppose we imagine a firm whose
production possibilities expand through time. Specifically, Z, fort = 1, 2, ...

gives the production possibilities for this firm at time ¢, and with Z, & Z,, | for
all 7. The data (py, z1), (3, 2,), ..., (pp z7) are alleged to record the prices that

face the firm and the production choice it made at times # = 1, ..., T, given this
(expanding) production technology. Suppose we assume that the choice of the
firm at time ¢ maximizes the firm’s profit at that time; that is, z, € arg max {p,

~z:z € Z,}. (This is a very debatable assumption: Perhaps the firm’s choice of

production plan at time ¢ affects the production possibilities it has at later times.



Then its choice at times should balance current profit against enhanced
opportunities for profit in the future. But we do not take that possibility into
account.) In the spirit of Proposition 9.10, give necessary and sufficient
conditions for the data (py, z;), (5, 25), ..., (Pp 2z to be consistent with this

story, for some sets Zy, Z,, ..., Zp

m *7. Concerning the messy caveat in Proposition 9.17 and Corollary 9.19,
first show by example that the caveat is needed. That is, give two closed and
convex free-disposal production possibility sets Z and Z’ that both give 7 = o
as their production finction. Then provide a detailed and explicit proof of the
corollary. (You are allowed to say stuff like “Now insert the text from xxxx to
yyyy verbatim,” assuming that what is in the text works in the context of the
profit function defined for the extended domain.)

If you would like a further challenge (not answered in the Student$ Guide:
Suppose we had permitted nonnegative (instead of strictly positive) price vectors
from the start in this chapter. What difficulties would this raise?

m 8. Suppose we have two production-possibility sets Z and Z' (both in RF for
some k) and their corresponding profit functions 7 and z'. How are the following
two relationships connected:

ZCZ and w'(p)=n(p)forallp e R*.

Does one of these imply the other? Are they equivalent? Do not just settle for
answers to those two questions; you should develop as (economically)
meaningful and general a proposition as you can about what it takes for one
profit finction to be everywhere at least as large as another in terms of the
underlying production-possibility sets. (The term “develop” here means “state
the result and give its proof” of course.)

m *9. Prove Proposition 9.20.

m 10.  Recall (fom the discussion just before Proposition 9.3) what it means
for a function f: RFESRU {0} to be convex and/or homogeneous of degree 1.



(a) Let Z be an arbitrary nonempty set in R¥, and let 77 Tz :RKSRU {0} be
defined by Tz =swpip z:z €& Z}. Show that 77 Tz is convex and

homogeneous of degree 1.

(b) Suppose that f : R SR U {o} is convex and homogeneous of degree 1.
Show that the set X* = x € Rk flx) < o} is a convex cone.

(c) The next step in the development of'this theory is to think about continuity
properties of - i E s defined in part a. What can you say about this? It might

b e helpful to letP“ = {f] = Rk - |z = ".k_,} and consider
separately the continuity of T on the interior ofP' on its boundary, and

on the interior of its complement. (What if anything can you say about the value
of fi- [z on the boundary of _E_-" *.2) Before setting out to try to do this (it isn’t

easy), you might find it helpﬁll to look at some examples. Begin with the
following two:

Z=Rk;Z={(z,2)e R:2; £0,2; < |1|"/?}.

m *11. Prove Proposition 9.23. and give examples that illustrate the negative
statements in parts ¢, d, and e.

| *12. Prove Proposition 9.24, omitting part j.

m *13. Prove Proposition 9.26. For a hint on how to attack this (getting the
locally bounded and upper semi-continuous sub-correspondence is a bit tricky),
look ahead to the proof of Proposition 10.3 and, in particular, the paragraph at
the end of the proof'that begins “Now we resort to a trick.”

m 4. Consider the cost finction C for a fixed . Under what conditions is this
a convex function of)?

m 5. Suppose the firm has a single output good. The level of this output
good will still be denoted by y, but nowy € R,. A production function is a

ﬁmctionf « i" — [i_ that gives, for a vector of inputs x € J§™%,



the greatest amount of output that can be obtained ffom that vector of inputs.
That is, if we start with a production-possibility set Z (where now the first
component is the sole output good, and components 2 through n + 1 give the
vector of inputs), we define

fiey=supiyec R.: {y,—0) € Z}.

Your assignment is to re-create the theory of the firm if the firm (a) has a single
output and (b) has its technology specified by a production function f; begin
with properties off that correspond to the various properties of Z used in the
chapter, and move on to either the firm’s cost-minimization problem

Minimize r - x, subject to f(x) = v,
or the firm’s full profit-maximization problem
Maximize qf(r) —r -z, subjecttor € RT.

Warning: you may find it helpful to wait until you have finished Chapter 10.

’ 1

! By labeling commodities with the time at which they exist, the theory we
develop here can be reinterpreted as a theory of dynamic production; see the
discussion of general equilibrium, time, and uncertainty in Chapter 16. But for
reasons that we will only be able to explain later, these extensions are not
altogether satisfactory.

2 The negative orthant in RF is the set ofz < 0; coordinate values of 0 are
permitted.

3 A mathematician would say that = is an extended real-valued function,
where the extended reals are the real numbers plus 4o0.

4 Proposition A3.26 is about functions that are real valued, while 7 is
allowed to take on the value +oo. But if you go through its proof, you’ll see



that this presents no problems. Of course, 7 cannot have a subgradient at a price
p where n(p) = oo, asnoaffine function can take on the value o at p.

51 don’t list continuity ofz as one of its properties because, in the current
context, it is redundant: since the domain ofz is an open set, convexity ofz
implies continuity (Proposition A3.17g). But see two sections further on for
more on this point.

6 «Extended” here refers to the extended domain and not the extended-reals
range.

7IfZ is not closed, then Z *(p*) could be empty.



Chapter Ten




The Expenditure-Minimiztion Problem

In this chapter, we return to the theory of consumer demand. Our ultimate
objective is to get a theory as complete as the theory of the firm, with results
similar to Propositions 9.14 through 9.19. Unhappily, the theory of the utility-
maximizing consumer is more complex than the theory of the profit-maximizing
firm, on two grounds:

1. The firm’s profit-maximization problem has the price vector p as parameter.
In the consumer’s utility-maximization problem, prices enter parametrically,
but so does the consumer’s income y.

2. In the firm’s profit-maximization problem, prices enter the objective
function, but the feasible set never changes. In the consumer’s utility-
maximization problem, prices (and income) shift the feasible set.

Rather than take on both of these complications simultaneously, we take them
one at a time: In this chapter, we examine a problem related to the consumer’s
utility-maximization problem, known as the (consumers) expenditure-
minimization problem, which has an extra parameter (beyond prices), but in
which the feasible set does not shiff with shiffs in prices. Then in Chapter 11,
we take on both complications at once, to finish off as best we can the theory of
the consumer.

10.1. Defining the EMP
As in Chapters 3 and 4, we study a consumer whose preferences on Rk are

given by the utility fanction u, about which the following assumption is made.

Assumption 10.1.  Until otherwise indicated (near the end of the chapter),
the utility function u is continuous and globally insatiable.

We sometimes assume that u is quasi-concave and/or locally insatiable, but we
will say so whenever either of those assumptions is made.
Recall the consumer’s utility-maximization problem (abbreviated CP):

Maximize u(r), subjecttop-r <y, x = 0,



for parameters p € Rk , a strictly positive price vector, and y € R, the

nonnegative level of income. The (consumers) expenditure-minimization
problem (abbreviated EMP) has as parameters the price vector p € RFF and a

level of utility v € R and is to
Minimize p - x, subject to u(x) = v,z = 0.

That is, we are seeking the bundle x that gets the consumer the utility level v as
cheaply as possible, given the prices p. (Since the utility finction is u, and we
will be working with values of the utility function, we use the letter v to denote
values of utility; u will always be the utility function.) Pictures of the two
problems are shown in Figure 10.1.
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Figure 10.1. The CP and the EMP in two pictures.

To tie back to the introduction, the target utility level v moves the fasible
set, but not the objective function. Hence, the feasible set is not entirely free of
all the parameters. But prices no longer impact the feasible set, which makes life
a lot easier.

While the CP is a problem about which we could gather empirical evidence
for a given consumer (at least, to the extent of asking hypothetical questions),
the EMP as formulated is artificial. By this I mean, we can ask a consumer, “Ii
you have so much income and face such-and-such prices, what will you buy?”



And the answer that comes back is some bundle of goods. Both question and
answer are concrete. Imagine, however, going to the consumer and asking,
“Facing prices p, what bundle is the cheapest way for you to attain utility level,
say, 36.5?” What, exactly, do we mean by utility level 36.5? Utility levels and
the utility function u are artifices of our model of the consumer; they aren’t
anything tangible. Even so, the EMP has an important mathematical role to
play.

We can render the EMP somewhat less artificial by reformulating it as, “For
a given reference bundle x°, what is the cheapest (at given prices p) bundle you
could buy that would make you at least as well off as you would be if you had
to consume x°2”! Concerning this reformulation, see Problems 10.8 and 10.9.

10.2. Basic Analysis of the EMP
Before analyzing the EMP, consider the target utility level v.

» Ifv <u(0), then the obvious solution to the EMP is x = 0, with a zero level
of expenditure.

. Since we assume thatu is globally insatiable, if we define

il = SuP..a;ERE' ’-‘.E,I(:J'."]I ; then the problem is infasible for
#1 = i, (Nox can satisfy u_(lr} =0 ; ifu is globally insatiable.)

Therefore, whenever we talk about a target level of utility v for the EMP, we

tacitly assume that 37 = [u”{[]} ), where §3 — 7, is of course

possible.

Proposition 10.2.  Fix a consumer (characterized by her continuous and

globally insatiable utility function u), prices p € Rk , and a target utility

level v = EU-{C']I- 7).

a. If x solves the EMP for this p and v, then x also solves the EMP for

prices Ap and utility level v, for 2 > 0.

b.  The EMP has a solution for this p and v.
c.  If u represents convex preferences (if u is quasi-concave), the set of



solutions of the EMP is a convex set. And if u represents strictly convex
preferences, the EMP has a unique solution.

d. If x solves the EMP at p and v, then u(x) = v.

The details ofthe proofare leff for you (as Problem 10.1, solved in the Student’s
Guide), with a fw hints:

1. Part b takes a bit of work, because the feasible set, {x € Rk Tu(x) > v},
is not compact. But because 3 = [H(Dj 3‘1} and because u is
continuous, some x* € RFF satisfies u(x’) = v (why?). The set {x € Rk

tux)>vandp -x<p- xo} is compact (why?). And the set of solutions to
the problem

Minimize p - 2, subjecttor € Rf. ur)>v, prr<p- 2’

is the same as the set of solutions to the EMP (why?).

2. In part ¢, quasi-concavity of u is needed to show convexity of the fasible
set. Also, the proof of uniqueness is not the standard proof, because x — p -
x is not a strictly quasi-concave function. You have to work at this one.

had

In contrast to the CP, where we need local insatiability of u to show that p
- x = y at the solution, in the EMP we get u(x) = v at solutions “ for free.” It
isn’t really for fiee, of course; continuity ofu is required. But local
insatiability is certainly not needed. This is because, in the EMP, the
objective function p - x is “locally insatiable”; wherever you are, unless you
are spending nothing, you can always spend a bit less locally. Please note,
though, that continuity ofu is needed in the argument; if you haven’t used
it in your proof your proofdoesn’t work.

10.3. Hicksian Demand and the Expenditure Function

Recall that for the CP, we use D(p, y) to denote the solutions for given p and y,
calling D(p, y) Marshallian demand at (p, y) and (p, y) = D(p, y) the
Marshallian demand correspondence. We denote the value of the objective



fanction at the solution by Wp, ), calling v the indirect utility function.
We use the following notation and names for the EMP:

« The set of solutions for given p and v is denoted H(p, v) and is called the
Hicksian demand at (p, v). The correspondence (p, v) = H(p, v) is called
the Hicksian demand correspondence.

* The value of the objective function at the solution is denoted by e(p, v), and
(p, v) — elp, v) is called the expenditure function.

Next, we get the standard continuity results.

Proposition 10.3.
a.  For fixed 3y = [U(G]. F':I( the function p — e(p, v) is continuous

and the correspondence p = H(p, v) is nonempty valued, locally bounded,
and upper semi-continuous.

b. If u satisfies local insatiability, the function (p, v) — e(p, V) is
continuous and the correspondence (p, v) = H(p, v) is nonempty-valued,
locally bounded, and upper semi-continuous.

c.  If uis strictly quasi-concave, H(p, v) is singleton for each (p, v). Let h(p,
v) denote the single element of H(p, v) for each p and v; then the function
(p, v) — h(p, v) is continuous.

Proof. These “standard” continuity results are not so simple to obtain.
Obviously, we want to apply Berge’s Theorem, but the original constraint
correspondence (p, v) = {x € Rk T u(x) > v} is not locally bounded. So we

need to patch together some sort of fix.

Before tackling this issue, let’s get the easy stuff out of the way. Part ¢
claims uniqueness of the solution for each p and v, but that only repeats
Proposition 10.2c. So this is a standard result about singleton-valued, upper
semi-continuous, and locally bounded correspondences, once we know that (p,
v) = H(p, v) is upper semi-continuous and locally bounded. Part b gives us
this, if we know that u is locally insatiable. Fix arbitrary x. By global
insatiability, u(x") > u(x) for some x". Because u is strictly quasi-concave, u(ax +
(1 — a)x') > u(x) for all a € (0, 1). But taking a arbitrarily close to 1 shows that



u is locally insatiable at x. Since x is arbitrary, u is locally insatiable.
Ifv is fixed, the constraint set {x € Rk T u(x) >v} is constant in the

parameter p; hence it is lower semi-continuous. Since §1 ﬁ: there exists
:F = Rk such  that u_[j‘-] st -fl = m. Fix fj, and let

Bp)={zecR:u@>v,p-z<p-8}. 1t
is clear that H(p, v) < B(p) for all strictly positive p and that minimizing
expenditure at prices p over B(p) gives the same value as minimizing over the
set ofx such that u(x) > v. Upper semi-continuity and local boundedness ofp =
B(p) is shown by the argument given back in the proof of Proposition 3.3. So
Berge can be applied, giving part a.

Now for part b. To show that (p, v) = {x € Rk T u(x) > v} is lower semi-

continuous, reason as follows. The p argument plays no role here; so we don’t
carry it along in the notation. We need to show that, if {V'} is a sequence of
utility targets with limit v and ifx is such that u(x) > v, then there exist X such
that u(x*) >V' for each n and lim, x" =x. The first step is to use local
insatiability to produce, for m = 1, 2, ..., a point y/" such that u()/") > u(x) and
[[" = x| < 1/m. Of course, this means that lim,, /" = x.

Now for each n, compare V' with the set {u('), u0?), ..., u(/)}. IfV' is
strictly greater than all these values, set X to be any (arbitrary) point in Rk

such that u(x*) >V". But ifV' is less than or equal to any of these n values, then
let X* = 3" where m is the greatest index in the set {1, ..., n} such that V' <

I assert that for any integer M, there is an N such that for all n > N, ¥ will
be chosen by this rule to be some y” with m > M. We know that (M) > u(x)
>v, and we know that v/ — v, so eventually (for all sufficiently large n), V' <
u(yMH). But then forn >M + 1 and large enough for this condition to hold,
yWM*1is a candidate for assignment as x", and so ifx” is not assigned to be yM*1,
it must be because X" = /" for some m > M + 1.

But this assertion finishes the proof of lower semi-continuity. The sequence
{x¥"} that we’ve constructed has u(x*) >V" for each n, and since ¥" for large n is



y" for large m and the sequence {)/""} converges to x, so does the sequence {x"}.

Now we resort to a trick. We want to show upper semi-continuity and local
boundedness ofa correspondence and continuity ofa function, jointly in p and v,
for 3 (= [Hl:':';l g ?__-} These are local properties of the correspondence and

the function in the sense that if we show that they hold for some open
neighborhood of each (p, v), then they hold globally. So, as in the proof of part
a, fix some o~ and some = such  that

o < @) =6 < o Foralr sRE migy’ < P,

define

Bp,v)={ze RF:u(x) = v',p-xz < p. 3}

Just as in part a, H(p, v)) S B(p, V), and minimizing expendlture at prices p'

over B(p, V') gives the same infimum as minimizing over {x € R T u(x) >V}
1 o / f . A h h

(as long as 33" = H,[:.I.:I . of course). And, again using the argument from the

proof of Proposition 3.3, (p, v') = B(p, V') is upper semi-continuous and locally
bounded. So we conclude ffom Berge’s Theorem that (p, v) = H(p, v) is upper
semi-continuous and locally bounded, and (p, v) — e(p, v) is continuous, for

_E-:' t} R 4 [u({] 1} But this domain contains an open
neighborhood of (p, W) for anyp € Rk , and -I!]':' = ['EI({]] l-‘} was
arbitrary, proving part b. g

10.4. Properties of the Expenditure Function

Now that we’ve gotten the basics and continuity properties out of the way, it is
time to develop the theory of the EMP in a way that will give us some
economic punch. This begins with a characterization ofthe expenditure function.

Proposition 10.4.
a. The expenditure function is homogeneous (of degree 1) in p; that is, e(Ap,
v) = Xe(p, v) for L > 0.
b. Forall p, e(p, v) =0 if v=u(0) and ep, v) > 0 if v> u(0).

c.  The expenditure function is strictly increasing in v and nondecreasing in



p-
d.  The expenditure function is concave in p.
e. The expenditure function e(p, v) is unbounded above in v for each p.

Proof. Part a follows ffom Proposition 10.2(a): Ifx € H(p, v), then x € H(p,
v); hence ife(p, v)=p - x, e(Ap, v)=Ap - x = de(p, v).

For part b, since e(p, v) = p - x for some x € Rk, e(p, v) >0 is obvious. Ifv=
u(0), x = 0 is a feasible way to achieve utility v, which gives the minimum
possible expenditure, 0. Ifv > u(0), then to achieve utility level v, we must

choose a consumption bundle x # 0, and then p - x > 0 for all strictly positive p.
(Remember, the EMP always has a solution; for v> u(0)and p € R-"‘F , there

is some x that solves the EMP; hence ep, vV)=p- x", and this is > 0.)

To prove part ¢, suppose v'> v. Pick x € H(p, V'), so that e(p, v') =p - x. By
part b and v' > v >u(0), e(p, v') > 0. By continuity ofu, we know that u(ax)
approaches u(x) >v' as a approaches 1; hence for some a <1, v(a*x) >v. But
then e(p, V) <p - (a'x) = a’e(p, V') < e(p, v'). Suppose p'>p. Pick x € H(p', v),
so that e(p’, v) = p' - x. Since x is fasible for the EMP at (p', v), it is fasible as
well for (p, v); hencee(p, v) <p -x <p' -x =e(p’ v), where it is the last
inequality that uses p' > p.

For part d, let x solve the EMP for (ap + (1 — a)p’, v), so that e(ap + (1 — a)p’,
v)=(ap + (1 — a)p’) - x. Since u(x) = v, the bundle x is always a feasible way to
achieve utility level v, although it may not be the cheapest way at prices other
than ap + (1 — a)p’. Accordingly,

e(p,)<p-z and e@P.v)<p -r
Combining these two inequalities gives
ae(p.v) + (1 —a)e(p’.v) <ap-x+(1—ay -2
=(ap+(1-a)y) z=elap+(1-a)p’.v).



Finally, for part e, fix p and K > 0. Let x° maximize u on the set {x € Rk ip
- x < K}. Since preferences are globally insatiable, there is some g3 =~ 7 (that

is, v is an attainable utility level) such that u(xo) <. It is immediate that e(p, v)
> K (since the best you can do spending K or less at prices p is A%, which gives
utility less than v. Since K is a free variable here, ¢ must be unbounded in v for
the fixed p. g

Two remarks about part d are worth making: First, once we know that e is
concave in p, we know that it is continuous in p (since the domain ofp is
open). So the proof of part d constitutes an independent proof of the first part of
Proposition 10.3a. Second, the proof of part d should remind you of how, in
Chapter 9, we showed that the profit function in the firm’s profit-maximization
problem is convex. In fact, this is a proof that you should fully internalize; if
shaken awake at 3:00 a.m. and asked to prove this, you should be able to do so.

Recall that afier showing that the profit function was convex in p, we went
on to show that any solution to the firm’s profit-maximization problem was a
subgradient ofthe profit function. You can guess, then, what comes next.

Proposition 10.5. Ifx € H(po, V), then x is a supergradient of e at (po, V) in
p, which is to say that
a. pO Cx= e(po, v), and

b. p-x=elp, v)forallp.
Hence, in particular, if e is differentiable in p at (po, V), the vector

de(p, i) de(p, 1)
8 T O,

(7'
is the unique solution of the EMP at (po, V).
Proof. Ifx € H(", v), then part a fllows immediately. And then, since we

know that u(x) = v, we know that x is feasible for any prices p when the target
utility is v, and part b fllows immediately. The rest of the proposition is a



simple consequence of what it means for a concave finction to be differentiable at
a point: Its gradient is its sole supergradient at the point. g

At least two partial converses could be stated for Proposition 10.5. One
would be If x € Rk is a supergradient of e in p at (p°, v), then x € H(PP,

v). This is not true in general, because we have no way ofknowing that u(x) > v.
(Compare with the discussion beginning on the bottom of page 212 and with
Problem 9.1, in the context of the theory of the firm. Can you construct a
counterexample in this context along those lines?) But a second partial converse
is true:

Proposition 10.6. If the EMP at a given (p, v) has a unique solution x, then
the expenditure function is differentiable in p at (p, v), and x is its gradient.

The proofis very similar to the proof of Proposition 9.22, so I will not bother
to give it in this context.

10.5. How Many Continuous Utility Functions Give the Same
Expenditure Function?

We are now (almost) ready for a hoped-for, double-barreled climax to this
chapter, namely answers to the following two questions:

1 . Given an expenditure function e generated from the utility function u,
(how) can we recover u?

2. Given a function e that is purported to be an expenditure function, is it
the expenditure function for some well-behaved utility function u (which we
can then recover, once we have an answer to question 1)?

This is similar to the recovery of the firm’s production-possibility set Z from its
profit finction z, but with the added complication of the extra parameter v in the
expenditure function. Of course, our experiences with this sort of thing in
Chapter 9 warn us that we can’t expect to recover the utility finction u that
generated e, since more than one utility function u will generate the same e. But
we can hope to characterize all utility functions that generate the same
expenditure function. We’ll first tackle that.



The key geometric concept needed to answer the question that is the title of
this section is the so-called comprehensive convex hull of a set. The setting is
RF, and we have the following definition.

Definition 10.7. For any set X & RF, the comprehensive convex hull of X
denoted CCH(X) is the smallest (by set inclusion) set Y that (a) contains X, (b)
is convex, and (c) has the property that if x € Y and x' > x, then x' € Y.?

The convex hull part of this definition should be obvious ffom the general
notion of a convex hull (see Appendix 3). The adjective comprehensive has to
do with property c: Ifx’ >x and x is in this set, then x'is in the set.

It may not be obvious to you that a smallest set with these properties exists.
But it isn’t hard to show existence. Take the intersection of all sets that have
these three properties. Since RF itself containsX, is convex, and is
comprehensive, we aren’t taking the intersection over an empty collection of
sets. If we take the intersection of an arbitrary collection of sets that all contain
X, the intersection contains X. If all the sets in the collection are convex, the
intersection is convex. And if all the sets are comprehensive in the sense the
term is being used here, their intersection is comprehensive. So the intersection
is in the collection of sets with these three properties. And, of course, it is
automatically minimal in terms of set inclusion.

Thinking in terms of this intersection allows us to give a constructive
definition of CCH(X):

Proposition 10.8 For any set X & RK, the comprehensive convex hull of X
is the set of points

]Nr
reR > z (2" for a firute imteger N, 0, € [0,1], Z a,=11" e X¢.
n=l h

Proof. Fix X, and call the set defined in the display Y. Y clearly contains X and
is comprehensive. It is a bit harder (but not hard) to see that Y is convex (and
I’m leaving that for you). So Y is one of the sets over which the intersection is



taken when constructing CCH(X); CCH(X) & Y. But, at the same time, ifZ is
any convex and comprehensive set that contains X, then ¥ & Z; ifx € Y, then
x is greater than or equal to a convex combination of points in X, and Z by
definition contains all such points. Therefore, when we form CCH(X) by taking
the intersection over all such Z, Y lies in that intersection, or ¥ & CCH(X).
Therefore, Y, the set in the display, is CCH(X). g

Please note: The characterization of CCH(X) just given can be rephrased as
follows: CCHX) = {x € RE: x<x'Prsomex’ € CH(X)}, where CH(X) is the
convex hull of X.

The fllowing general proposition will be needed.

Proposition 10.9. [f X is a closed subset of Rk, then CCH(X) is closed.

There is more to this proposition than you may think at first. It isn’t true that
CCH(X) is necessary closed, if X is merely a closed subset of R (as opposed to
Rk), and it isn’t true that the convex hull ofa general closed subset ofR-rf is

always closed. (Can you provide counterexamples?)

Proof. Fix X. Suppose {x"} is a sequence ffom CCH(X) with limit x. For each
n, there are nonnegative weights o’ that sum to 1 and bundles ¥ such that X"
€ X, where il'r' E Z'; l'.'l'nf'..rr'ﬁ. I haven’t said how many i’s there
are for each n and, you migl:t think, the number (call it K ) might explode to
infinity. But, in fact, Carathéodory’s Theorem (Proposition A3.5) ensures that
we can assume that, for each n, the index set ofi is {1, 2, ..., k+ 1}.

Since each o lies between 0 and 1, we can by looking along a subsequence
ofthe n assume that, foreach i = 1, ..., k+ 1, lim,, o' exists. Call the limit o.
For some of the i, o may be zero; for others it is strictly gosmve let 7 denote
the subset of {1, ..., k+ 1} such that & > 0. Because z =1 for

each n, the same is true in the limit, or Ek 11 at =1 Fori ELd=0,

so we know that 3 ;< d=1.



We know that =7 i, 1i  Since the o are all
T Eu A

nonnegative scalars, and the ¥ are all nonnegative vectors, if we drop some
terms in the sum, we maintain the inequality. In particular, ¥ > Y, o"x".
Now the X" live inside a bounded set (they have limit x, so eventually they stay
in neighborhoods ofx, and there are only finitely many other terms to take into
account). And the ¢ fori € [ are all eventually strictly bounded away from
zero (they have limits that are strictly positive). Therefore, the inequalities X >
Yies a"'x" ensure the X" for i € I must, eventually, live inside a bounded set.
So, by looking along a further subsequence, we can assume that, for each i € [,
lim,, ¥ exists; call the limit y/. Since X is closed, Y € X. And, by taking
limits on both sides of X" > ¥, ; o™, we getx > ¥, o)/, We already have
established that ) ;< ol = 1 and that Y € X for each i, so this tells us that x €
CCH(X). Therefore, CCH(X) is closed. g

The next result links the concept of CCH sets with functions that are quasi-
concave and nondecreasing.

Proposition 10.10. A function u :Rk — R is quasi-concave and

nondecreasing if and only if its upper-level sets are convex and comprehensive;
that is, for all v € R,

{x € R¥: w(z) > v} = CCH({z € R* : u(z) > v}.

Proof. Suppose u is quasi-concave and nondecreasing. Then we know that the
sets {x € R : u(x) > v} are convex and comprehensive. (For convexity of the

sets, enlist Proposition A3.19. Showing that the sets are comprehensive is a
matter ofwrmng down a sequence of definitions.) Fix v € R and temporarily let
={x € R T u(x) > v}. Since CCH(X) is the intersection of all convex and

comprehensive sets that contain X, X & CCH(X) and, on the other hand, since
X is convex and comprehensive and contains X, it is among the sets in the
intersection, so CCH(X) & X. Hence X = CCH(X).



And suppose, for each v, the set {x € Rk cu(x) >vy = CCH({x € Rk :

u(x) >v}). Then this set is convex and comprehensive. But the convexity of
such sets for all v implies that u is quasi-concave; again enlist Proposition

if x' 7 ) [ i,
A3.19. And ifx’ > x, thcn.l = {ul = R+ > “-(.I:l = u{_‘l]}:
hence x' is also in that set (since the set is comprehensive), and so u(x') > u(x).
The function u is nondecreasing. pg

We come to the central result ofthis section.

Proposition 10.11.  Fix two continuous utility functions u and u'. Let e be
the expenditure function defined from u, and e' be the expenditure function
defined from u'. For v € R, if

CCH({z € R* : u(z) > v}) =CCH({z € R* : v/(z) > v}),
then e(p, v) =e(p, v) for all p € Rk . Conversely, if u and u' are both

continuous and, for some v,
CCH({z € R* 1 u(z) 2 v}) # CCH({z € R* : v/(z) = v)),
then for some p € R%_, ep, v) #ep, v).

Before getting to the proof two comments (one of which will give us a
corollary) are in order:

* Note my emphasis on the utility functions being continuous. In view of
Assumption 10.1, you may wonder why I even mention this; aren’t all
utility functions in this chapter assumed to be continuous? They are indeed,
but if you go back to the proof of Proposition 10.10, you can see that the
proposition is true even ifu is not continuous. And the first half of
Proposition 10.11—if the comprehensive convex hulls of the upper-level
sets for a given v are the same, then the expenditure finctions agree for that
v—also doesn’t need continuity of the utility functions. But the second hali



of Proposition 10.11 does need continuity, because it will be proven using
the Strict-Separation Theorem (Proposition A3.11), for which we need the
CCH sets to be closed.? However, I don’t need to assume that the utility
functions are globally insatiable for Proposition 10.10 or for either half of
Proposition 10.11, which leads to the question, How much of our earlier
results in this chapter needed the two parts of Assumption 10.1? Problem
10.3 asks you to go back and investigate this question.

» The proposition is stated one v at a time: The comprehensive convex hulls
of the upper-level sets for a given v are the same if and only if the
expenditure finctions agree for that v. But this immediately implies a result
for “all the v at once™

Corollary 10.12.  Fix two continuous utility functions u and u'. Let e be the
expenditure function defined from u and e' be the expenditure function defined
from u'. Then e = e'if and only if

CCH({z e Rf 1u(r) 2 v})=CCH({z € Rt @)z v}) forallveR.

Proof of Proposition 10.11. Suppose first that, for some v,

CCH({z € R* : u(z) > v}) = CCH({z € R* : v/(z) > v}).

Fix anyp € Rk , and suppose that e(p, v) <e'(p, v). Sincee(p, v) is the

minimal expenditure needed to obtain utility level v at prices p under u, there is
somex such thatu(x) >v andp -x <ep, v). Of course

r € CCH({# € RE : w(@) > ) and therebre,
T e CCH{{E’ = RE : u_.r{i\j = E’}j- This means that there
exist nonnegative weights of summing to 1 and bundles X with «'(¥) > v such
that x > Y X' But thenp x>, a' (p - &), and sop - x <p - x for at least
one i. And for that i, u/(X) > v. Hence e/(p, v) <p - x/, contradicting the assertion
that p - x < e(p, v).

As for the converse, note first that since u and u' are both continuous



fanctions, both {x € Rk cu(x)>v} and {x € Rk s u'(x) > v} are closed. So
by Proposition 10.9, both CCH({x € % : u(x)>v}) and CCH(ix € % :

u'(x) > v} are closed.

Now suppose that, for some v,
CCH({z € R* : u(z) > v})# CCH({z € R : v/(z) > v}).

Without loss of generality, suppose that xX° € CCH({x € Rk T u(x) >v}) but
¢ CCH({x € 3% 1 u/(x) > v}). Temporarily denote CCH({x € RE u >
v}) by X'. Since x € CCH({x € Rh s u(x) > v}), we know that x° > 2 o for
nonnegative weights o that sum to 1 and vectors ¥’ such that u(x') >v. One of
the &/ is not a member of X', since if they all were, so would be Y o (since X'
is convex) and then so would be 10 (since X’ is comprehensive). So, without

loss of generality, we can assume that the original A is one of thex

specifically, it satisfies #(x”) > v but is not in the closed, comprehensive, and
convex set X".

Since X" is closed and convex, we can strictly separate A fiom X7 that is,
there exists a nonzero vector g € R¥ such that q A< inflg ‘x :x € X'}.
Since X' is comprehensive upwards, the usual argument shows that ¢ must be
nonnegative. Now take any strictly positive vector, say e = (1, 1, ..., 1) € RK,
and let & > Obe small enough so that

CCH({z € R* : u(z) > v}) £ CCH({z € R : v/(z) > v}).
Let ) =i+ €&, clalyp € R-"“F andp X0 < inflp ‘x :x € X7}
(sincep -x <g -x for allx € Rk). But this means that the expenditure

fanction for u, evaluated at p and v, or e(p, v), is less than or equal to p 0,
sincex’ € {x € Rk cu(x) >v}. And the expenditure function for u’,

evaluated at p and v, or e/(p, v) is min{p - x : x € X'}, by the first part of the



proposition. Hence e(p, v) <el(p, v); u and u’ have diferent expenditure
finctions. gy

We are almost ready for the two big questions posed at the start of this
section. In particular, we know that if we are given an expenditure finction e
that is generated by some utility fanction u, we can’t count on recovering the
particular u from e: Other utility functions u' share e.

We do know, however, that if e was generated by a continuous, quasi-
concave, and nondecreasing utility function u, then u is the unique continuous,
quasi-concave, and nondecreasing utility function that generates e. We know
this because, ifu’ is any other continuous, quasi-concave, and nondecreasing
utility function, then u and u' must disagree at some A% that is, u(xo) * u'(xo)‘
Without loss of generality, suppose u(x’) > 1'(), and let v = u(x®). Thenx’ €
x € RFF s u(x) >v} = CCH({x € Rk cu(x) >v}), whilex® € {x € Rk :
u'(x) >v} = CCH({x € Rk :u'(x) >v}), and hence by Corollary 10.12, they
have different expenditure functions.

To make a neat package of these results, it would be nice to know that for

any continuous utility function u, there exists some continuous, quasi-concave,
and nondecreasing utility function ﬂ' that gives the same expenditure function

as does u. Then given an expenditure function e generated by some continuous
utility finction u, we can hope to be able to recover, if notu itself the
(necessarily unique) continuous, quasi-concave, and nondecreasing utility
function i]'. that shares u’s expenditure function. (And, indeed, that hope will be

realized next section.) So that is our final result for this section:

Proposition 10.13.  Suppose the utility function u : Rk — R is continuous.
Define utility function ﬂ. : Rk — R from u by

(") = stip {-t‘ eR:2" e CCH({z € RF :u() > v})}. (10.1)

The function ﬂ' is continuous, quasi-concave, and nondecreasing, and for all v
€ R,



CCH({z € R¥ :u(@) > v}) = {x € R¥ 1 k(@) > v} (10.2)

Therefore, for the original u, -ﬂ is the unique continuous, quasi-concave, and
nondecreasing utility function that has the same expenditure function as u.
Moreover, if u is locally insatiable, so is ﬂ'

The definition in display (10.1) may make your head hurt, so let me recast it
using the characterization of CCH sets developed in Proposition 10.8. The
function ﬂ. defined by (10.1) is equivalently

iz) :=supsv € R: There exista finite N, ¥ andeti=1,...,N, such

that o® > U.Zt&‘iz Lur) > v, and 1> ZQ-"J.‘": . (101

Proof. As a first step, we will show that t’]' is finite valued. Suppose instead

that, for some x°, ﬂ(xo) = oo. That is, for each integer n, O e CCH({x € Rk

: u(x) >n}). This would mean that, for each n, s greater than or equal to
some convex combination of points, each of which has u value greater than n.
By Carathéodory’s Theorem, we can assume that the number of points in each
of these convex combinations is no more thank + 1. That is,
J.‘j e EF_“" ﬂ.‘-"ell;lﬁ-';ﬂ where the ¢ are nonnegative and sum to 1
=1 ’

and the X" all satisfy (") > n. Looking along successive subsequences, we can
without loss of generality assume that lim o™ = ¢ for each i. By the same

n—o0
argument used in the proof of Proposition 10.9, we know that not all ofthe o =
0 and, in fact, E'i_"‘ll {1-";' — 7. Let/be the subset of {1, ..., k+1} such

that of > 0. The argument in the proof of Proposition 10.9 tells us that, since K0



> Y, o™, each of the sequences {¥; n = 1, ...} fri € I lies within a
compact set. So we can extract convergent subsequences. But letting i% be one
. . . . Ouy - -

index in /, if the limit along a subsequence of {x' "} is some X, continuity of u

0
and u(x' ") > n present a contradiction.
Next we show that ifﬁ is defined from u by (10.1), then (10.2) holds. Fix

some v, and suppose that x* € CCH({x € Rk : u(x) > v}). When defining 'EI'-

(xo) via (10.1), this implies that v is in the set over which the supremum is
taken and, therefore, ﬁ(xo) >v. Therefore, for the fixed v, the set on the lefi-hand
side of (10.2) is a subset ofthe set on the right-hand side.

Conversely, for fixed v, if20 is in the set on the right-hand side of (10.2),
then ﬂ(xo) >v. Going back to (10.1), this means that for all n = 1, 2, ..., there

is some v' > v — 1/n such that X’ € CCH({x' € Rk tu(x) >v'}). That is,
x‘:‘ > zfi—_ll ﬂ_i:l'rxin for the usual scalars o, i = 1, ..., k+ 1 and for
X" i=1, .., k+ 1 such that u(x) >v—1/n. (We are using Carathéodory once
again, of course.) Enlisting once again the argument in Proposition 10.9, we can
assume that the o converge inn tod fori = 1, ..., k + 1. Letting I be the
index set ofi such that o' > 0, we know that 3,c; of = 1 and that 0> Yier

o™y which puts a uniform bound on thex” fori € I, so we can assume
further that the X all converge in 1 to . By continuity, u(x) >v fori € I, and
0> Yier ox, sox" € CCH({x € RFF s u(x) > v}). Therefre, X0 is in the set
on the lefi-hand side of (10.2), and the two sets are the same.

It is worth noting that, as a by-product of the argument just given, we’ve
shown that the supremum in (10.1) is actually a maximum.

This means that the sets I.‘l:l - Ef'hli ﬂ_iﬁ I‘i,n (for different v) are

CCH sets and hence comprehensive and convex for each v, which implies that
f,l'- is quasi-concave and nondecreasing (per Proposition 10.10).

To show that i]' is continuous, I’ll show separately that it is upper and then



lower semi-continuous. For upper semi-continuity, first note that the sets {x €
Rk T u(x) >v} are closed, since u is continuous. By Proposition 10.9, this

imp_lies that the sets JL_T = Rk :u[:;r} = -i'_r} are all closed. And one

characterization of upper semi-continuity ofa fanction is that its upper-level sets
are closed. Since that result isn’t given in Appendix 2, here it is: The definition
of upper semi-continuity given in Appendix 2 is that, ifx¥” — x, then lim sup,

r™ — z, limsup i(z") > G(x). Supose to the
contrary that, for some sequence X' — x, lim sup, ﬂ(_‘]”} " ﬂ{i)
Then letting 17 = ﬂ{x}r this would mean that for some v’ > v and for
infinitely many 73 ﬂ(l“j > -i-__-J'lr or (for those ),
" = {_-f e Rﬁ : ﬂ(i‘] = l-‘!}. But looking along this
subsequence, X" — x, and we know that {j‘ = Rk . ﬂ(f] -3 'l:"r} is
a closed set, and hence e {j‘.. = R{c . ﬂ{ij -3 E’I}I a

contradiction.

For lower semi-continuity, we need to show that if ¥’ —x, lim inf,
ﬂ[l”)i ﬂ[-l;l _ Suppose by way of contradiction that, looking along a
subsequence if necessary, we have a sequence x" — x with lim,, ﬁ_[;rn} exists
and is strictly less than -'a.l(x). Letv = -a.l(x). We know that for some i = 1, ...,

N, there are weights of and vectors X’ such that the weights are nonnegative and
sum to 1, the x' all satisfy u(x) >v, and x > Y, o’x". Consider, forf < 1, ¥;

o/ (Bd). 1 assert that fr all n sufficiently large, X’ > 2 d(B). To see this, think
about the inequality coordinate by coordinate. Ifx; = 0, since

o - 2 % and since all the weights and coordinate values are
T g

nonnegative, we know that each Ii must be 0, in which case ‘I’F (which is

also nonnegative) is obviously > the sum. And ifx; > 0 then

xp > Egﬁ -:'r’*";rg. implies g, .."EIE = Zi (ki[iii‘;ﬁ'}-’



and IF' ; having limit x, will eventually be larger than
I * - "I- I ".'.-
Bxg = Z-:. mt ':-'jmg} .

Hence, for all sufficiently large n, it is true that X" > ¥, ¢/(8x) (for fixed § <
1), and therefore ﬂ(ﬂ') > min; {u(fx)}. Butu(’) >v for alli, andu is
continuous, so lim,_,; min; {u(B)} = mini{u()/)} > v, a contradiction.

The “therefore” assertion following (10.2) ©llows from the argument given
informally before the statement of Proposition 10.13.

Finally, suppose u is locally insatiable (as well as continuous). Fix x and
let W = (). By (10.2), 2 € CCH({x € J% u() =v")). Therefore, there
exist, fori = 1, ..., N, weights o and vectors ¥ such that X0 > 2 a, the
weights are nonnegative and sum to 1, and u(x) >V° for all i. Take any € >0
By local insatiability ofu, there exist jﬂi each within £/k of ¥, respectively,

e -

such that u(‘f‘i] ot H-'l:.l"t:l o3 t_-':' Letting g3 be the smallest of the
numbers 'ELI::FT.'} : this implies that

) a'# € CCH({z € Rf : u(z) = 1)),

i A58y = 37~ 0 And by the triangle inequality, si
oru(z?_‘ o } b T T | | y the triangle inequality, since
0> Y, ax' and each i'.', is within ¢/k of ¥, there is some i within £ of 0

o - .':-_\'«.'i1 - W . L, A E N :
that is > zi atE: therefore i'.f,{:l.jl > .i._.ﬂ_ This is local
insatiability. g
10.6. Recovering Continuous Utility Functions from Expenditure

Functions

The first of our two climax questions was Given an expenditure function e
derived from a utility function u, (how) can you recover u? The previous



section shows that we cannot recover u per se. However:

Proposition 10.14.  Suppose e is the expenditure function derived from a
continuous utility function u. Let i} be the expenditure-equivalent, continuous,

quasi-concave, and nondecreasing utility function derived from u via the
definition (10.1). Then for every v € R,

{eRpa>epu)foralpe BE}={v e R i) > o}, (103)
And if we define

i(r) =max{v € R:p-z > e(p.v) forall pe R* ), (10.4)
then ﬁ is identical to ﬂ.

Comparisons with how we recovered a production-possibility set Z fiom the
profit function are obvious, although this goes a step further, since there we
recovered only a set; here we are recovering the upper-level sets defined ffom a
fanction.

Proof. Fix u, i]'.’ and e. Showing that the sets on the right-hand side of (10.3)

are subsets of the sets on the lefi-hand side is trivial: Suppose x° is an element
of ﬁ for some v. Since e is the expenditure function for u, itisthe expenditure

function for -ﬂ, and so p X0 >e(p, v) Pralp € RFF ; that is, x° is an
element of the set on the lefi-hand side of (10.3) for the fixed v.

We show the reverse set inclusions by arguing the contrapositive: Suppose
that for some fixed v, x¥ is not in the set on the right-hand side of (10.3); that is,
ﬂ(xo) <v Let ¥ — {-;[r = Rii : &I::J‘.‘}I s i!-‘} i the set X is
closed, convex, and comprehensive. Being closed and convex, we can strictly

separate it iom x”: There exists some nonzero ¢ € RF such that q XX <inf{g
-x:x € X}. Since the set X is comprehensive, the usual argument shows that
q = 0. Therefore, we can find ¢ > 0 sufficiently small (but still strictly positive)



such that ifp = ¢ + £ (1, 1, ..., 1), thenp ‘O <inf{g-x:x € X} <inf{p -
x:x € X}. But p is strictly positive, and inf {p - x: x € X} = e(p, v), so this
says that p - o< e(p, v). Therefore, +° is not in the set on the lefi-hand side of
(10.3).

Showing that if'a'. is defined by (10.4), then El' is i]' is now a matter of
massaging definitions. Take any O1f ﬂ(xo) =19, then we know that Y4 x>
e(p, W) for all strictly positive p by (10.3). So ¥ is in the set over which the

maximum is taken in (10.4), and 77 Conversely, suppose that for some v' > W,

p X0 >e(p, V') for all strictly positive p. Then applying (10.3) again tells us
that x¥ is in the set ofx such that ﬂ(x) >v". This isn’t so, since v' was chosen

to be greater than v° = ‘U.(xo)' Therefore, the largest possible v over which we
are taking the maximum in (10.4) when defining (%)is 7,), and (") =
-&(xo). Note, by the way, that this shows that, in (10.4), it is appropriate to

write a maximum instead ofa supremum. pg

10.7. Is an Alleged Expenditure Function Really an Expenditure
Function?

The second of our two big questions is, Given a function e that is alleged to be
the expenditure function for some continuous (or possibly continuous and
locally insatiable) utility function u, is it indeed? Is there some continuous
(and, perhaps, locally insatiable) utility finction that generates e?

If the answer is yes, then we know that there is a continuous, (perhaps
locally insatiable,) quasi-concave, and nondecreasing function u for which the
answer is yes, namely the ﬂ. that goes with u. And, in principle, we know how
to find -a. if it exists: Employ equations (10.3) and (10.4), and check whether
the ﬂ. = EI' produced is continuous and, if desired, locally insatiable.

But running the “machine” defined by (10.3) and (10.4) for a specific e is
certainly a nontrivial exercise. We’d like to know if there is a list of properties
for e that guarantees, once we run this machine, we wind up with a nice utility
function u.



We have accumulated a list of necessary conditions: First, e must have a
domain of definition that is the cross product oka and a halfclosed (on the

bottom), halfopen interval of real numbers. The bottom of this halfclosed, half
open interval should be the value ofu(0) and, letting v denote this value, it
should be true that e(p, 1!) = 0 for all p. To avoid notational complications,
we’ll assume henceforth that 77 = 0, which amounts to scaling the original
utility fanction (if one exists) so that u(0) = 0.

Besides this, e should be jointly continuous inp and v. It should be
concave and homogeneous of degree 1 in p. It should be nondecreasing in p and,
if we want u to be locally insatiable, strictly increasing in v. It should be
unbounded inv for each p (where, again, we are using some insatiability
properties).

Are these necessary conditions enough? If a candidate expenditure function
has all these properties, is there a continuous and locally insatiable utility
fanction that underlies it? The fllowing proposition gives us considerable hope
that the answer may be yes.

Proposition 10.15. Suppose that e : R-"f x [0, ) — [0, ®) is continuous

in all its arguments; concave, homogeneous of degree 1, and nondecreasing in
p for each v; strictly increasing and unbounded in v for each p; and satisfies
e(p, 0) = 0 for all p. Define, for each v in its domain,

X, ={ze RF: p-x 2 e(p,v)forallp € R*“} (10.5)

Then each X, is closed, convex, and comprehensive. The X, sets nest.: if v' <y,
then X, © X, and, moreover, X /= X, For everyx € R?, there is some v <
i such that x€ X, And for every p € Rk and every v, there exists an x(p,
v) € X, such that p-x(p, v) = e(p, v) and (by definition) for every x € X,, p-x >
e(p, v), so that the problem

minimize p - x, over x € X,



has a solution, and at that solution, p - x = e(p, v).

Proof. Parts of this are quite simple, while the rest is pretty straightforward,
following what we did in Chapter 9.
To begin with the simple parts, rewrite definition (10.5) as

K= ﬂ [zeRF:p-z>epv)). (10.5")
pcRE,

That’s an intersection of halfspaces. Halfspaces are closed and convex, and
(arbitrary) intersections of closed and convex sets are closed and convex. Since
all the p are nonnegative (in fact, strictly positive), all the halfspaces are
comprehensive, and (arbitrary) intersections of comprehensive sets are
comprehensive. So each X, is closed, convex, and comprehensive.

Since each e(p, V) is strictly increasing in v, it is apparent that the X, sets
nest. (Ifv > v/, the halfspaces that are intersected to define X, are all subsets of
the halfspaces that are intersected to define X,.) Note: This only shows that ifv
>y, then X, S X . We have “weak” nesting. The “moreover” part of the
statement is proved later.

Take any X0 € Rk and any p° € Rk . Since e(p’, v) is unbounded in v

(fixing po), there is some v such that e(po, v) > po X and so X' € X, for that v.
Fix 10, and take any po € R-:F . Since e(p, W) is concave inp andp0 is in

the interior of the domain of e, a supergradient ofp — e(p, vo)at po exists. Since
e is homogeneous of degree 1 in p, we know (Proposition A3.26) that this

supergradient is a linear function; that is, for some L e Rk, pO 0= e(po, vo)
and p - x° > e(p, +*) for all other p € Rk .

Suppose x° had some coordinate value less than 0. Take p that is N in that

coordinate value and 1 everywhere else; for N sufficiently large, p -x% will be

less than 0. But e(p, W) is nonnegative (in fact, is strictly positive unless W=



0), which would be a contradiction, so x° > 0. Setting x(»°, +*) = x” completes
the proof ofthis part ofthe proposition.

Finally, we have the “moreover” left to prove. Fix v' and v with v < v. Take
any strictly positive price vector p. Then e(p, V) <e(p, v). By the last
paragraph, we know there is x' € X, such the p - x' = e(p, V). But this x" is
then clearly not an element of X|,.

Definition (10.5) is, in essence, telling us how to find the no-worse-than-
utility-level-v sets for the alleged utility function that (we hope) will generate e.
It shows that these sets are closed, convex, and comprehensive. They nest, just
like they should. Every bundle x is limited in how much utility it provides.
And if we try to solve the expenditure-minimization problem with one of these
no-worse-than-utility-level-v sets, it gives us back the alleged expenditure
fanction e(p, v). Ifthere is any (quasi-concave and nondecreasing) utility function
that gives us e, these would have to be the no-worse-than-utility-level-v sets for
that utility function, because (as we already know) each expenditure function e
uniquely defines these sets. In other words, if we go on ffom (10.5) and define

w(z) :=max{v:z e X,}, (10.6)

assuming of course that the max is warranted, then either u is our utility
function or there is no utility function that works.

So, to finish up and get an affirmative answer to our second big question
(where the sufficient conditions are the conditions in Proposition 10.15), we
only (!) need to show that the utility function u defined via (10.6) is continuous
and locally insatiable. Unhappily, we can’t take that last step.

To clear away some easy stuff, let’s establish that we can use a maximum in
(10.5) and harvest one piece of what we’d like to show.

Proposition 10.16.  Suppose e satisfies all the assumptions of Proposition
10.15 and so, in consequence, we define the sets X, via (10.5). Then for each
xO, the set

{vER:xOEXV}



contains its supremum, and it makes sense to write the max in (10.5).
Moreover, the function u that is then defined in (10.6) is upper semi-
continuous, quasi-concave, nondecreasing, and locally insatiable.

Proof. Fix 2, and suppose that the supremum ofthe set {v € R : Qe X,} is

W, This implies there is a sequence {V/'} approaching +* fom below such that,
for each ", p 20 >e(p, V) Broallp € RFF . Continuity ofe in thev
argument assures us that p - o> ep, W) for all pE Rk , and 0 is indeed in
the set over which the supremum is being taken.

That being so, for every v, for u defined via (10.6), {x € Rk Du(x) >v =
X,. We have already shown that each X, closed, convex, and comprehensive, so
u is upper semi-continuous, quasi-concave, and nondecreasing.

And for local insatiability, I will show that, ife = (1, 1, ..., 1) € RFF,
then for any O e Rk, u(xo +de) > u(xo) for all 6 > 0. Suppose this is not
true; that is, we find X’ and 6 such that u(x0 +de) = W< u(xo). Since u is
nondecreasing, this implies that for every x such that P <x<ad+de u(x) = W,

Let Z= U .0 X,. Ofcourse, for any x such that x < K+ de, u(x) < W, sox
E Z. Therefore, we can put an open ball around A that is disjoint ffom Z and,

therefore, we can strictly separate A fiom the closure of Z (which is convex,
because Z is convex). That is, for somep € R, p - x0 < inf.c,p - x. Since Z
is comprehensive upwards, p > 0, and by the usual argument, we can perturb p
slightly so it is strictly positive, without affecting the strict separation ffom the
closure of Z. Fix this p.

Per Proposition 10.15, for every v, if we minimize p - x overx € X, the
value of the solution is e(p, v). So consider this problem for v = W and forv =
W+ €, € > 0. In the case v =10, the answer is no greater than p - x, since x°

€ X,. In the casev = W+ £, the answer can be no smaller than the infimum

over Z. But this then says that limg _,, e(p, vo) = the infimum > e(p, vo),



contradicting the assumed continuity ofe.

But for nice candidate expenditure functions, where “nice” means e satisfies
all the assumptions of Proposition 10.15, the fanction u that is constructed by
(10.5) and (10.6) will fail to be lower semi-continuous. Figure 10.2 (taken ffom
Krishna and Sonnenschein 1990) indicates what can go wrong. The figure
depicts the indifference curves ofa utility function that is not continuous but that
is strictly increasing and quasi-concave. The numbers on the indifference curves
indicate the utility levels for the curves. The key point is (xy, 0). A number of

indifference curves, all those with utility level between 2 and 4, meet at this
point. (You can assign (x,, 0) any utility level you wish between 2 and 4.) All

indifference curves approach the x-axis at slope approaching zero. To the left and
right of the two extra heavy indiference curves (levels 2 and 4, respectively), the
indifference curves are horizonal translates of the two (the level 4 curve to the
right and the level 2 curve to the leff); for utility levels between the levels of the
two extra heavy curves, the transition is smooth.

Despite the fact that this utility function fails to be continuous at (x,, 0), we
can still solve the expenditure-minimization problem using it, for every utility
level and every strictly positive price p. The lack of continuity at (xy, 0) won’t

present a problem, because the indifference curves have slope 0 at that point;
therefore, at any strictly positive price, the solution will stay away. For this
reason, the expenditure function e(p, v) that is produced will be continuous in p
and v. And if you use this expenditure function to reconstruct the utility
function, you will get the function back, except that the process of reconstructing
the utility fanction will give (x,, 0) the utility value 4 (which it will have to do,

to keep the reconstructed utility fuinction upper semi-continuous).



y-good

z-good
(3.0)

Fig. 10.2. Indifrence curves for a counterexample. A utility function with
the sort of indifference curves depicted will generate a continuous
expenditure finction, even though the utility finction is not continuous.
The key is that the indifierence curves hit the x-axis with a slope of 0. The
numbers by the indifference curves are the utility levels for each. The level
ofutility at the point (xy, 0) can be anything you choose between 2 and 4,

but when the expenditure finction is inverted using (10.5) and (10.6), (x,,
0) will be assigned the utility level 4.

So what do we do with this unhappy state of affairs? The literature gives (at
least) two answers.

We can give up on continuity. We’ve shown that a continuous expenditure
function produces upper semi-continuous utility. If you want a theory in which
everything fits together seamlessly, begin with upper semi-continuous utility,
which would mean going back and redoing a lot of this chapter (and Chapter 3).
In fact, you could go back even further, to Chapter 2: Debreu’s Theorem is our
excuse for assuming that the consumer’s preferences have a continuous utility
representation; this is ensured if her preferences are continuous. We can certainly
talk about preferences that are upper semi-continuous—those would be



preferences where the no-worse-than sets are all closed—and then the question
is, If preferences are upper semi-continuous, do they necessarily have an upper
semi-continuous utility representation?

Ifyou do this—ifyyou go back to reconstruct this entire theory assuming that
u is (only) upper semi-continuous, some nice things will happen, but there will
also be some snags. One nice thing will be that, in the CP, the existence of
solutions is still guaranteed: Ifu is (only) upper semi-continuous, maximizing u
over a compact set is guaranteed to have a solution. (We are minimizing in the
EMP, but what is being minimized is the bilinear finction p - x, so that’s not a
problem. And we are minimizing over the set {x € R Tu(x) >v}ifu is

upper semi-continuous, this set is closed.) However, go back to Proposition
10.2d, which says, ifx solves the EMP at p and v, then u(x) = v.Ifu is only
upper semi-continuous, that is no longer true. More significantly, expenditure
functions will no longer be continuous in the v argument. They will be
continuous in p, because concavity in p still holds (why is this enough?). But
in v, we only get lower semi-continuity. In fact, this gives us a neat package:
Upper semi-continuous utility functions are “dual” to expenditure functions that
are lower semi-continuous in v.

You are asked to take the first step in a general development of'this theory in
Problem 10.4. But if you want to see the full-blown treatment, see Krishna and
Sonnenschein (1990).

The second way to proceed is to find further conditions on (candidate)
expenditure functions that are necessary and sufficient for continuous utility.
Jackson (1986a) provides the missing link.

Proposition 10.17.% Let U be the class of utility functions u on R]‘Jr that are
quasi-concave, continuous, nondecreasing, locally insatiable, and satisfy u(0)
= Ll _ I . . ~ .
0and SH;EJIERE. ?_E,Ii.]‘_:l 1. Let E be the class of expenditure
functions e with domain RkJrJr x [0, ) — R, that are continuous and

unbounded above in v, nondecreasing in p and strictly increasing in v, concave
and homogeneous of degree 1 in p, satisfy e(p, v) = 0 if and only if v = 0, and
satisfy



For every Lept for each v > Oand ¢ > 0 such that p- 2!
>e(p,v+e)forallp€ RE . thereevists 6.0 < 5 < 1, (10.7)
such that dp- 27 > e(p,0) forall p € RE.

Then every utility function u € U generates a unique expenditure function e €
E, and every expenditure function e € E generates a unique utility function u
€ U, the latter by the construction described in this section.

Condition (10.7) is just what we need (obviously so, since it is necessary and
sufficient). But it is hard to verify in practice: Jackson goes on to give a
condition on e sufficient to guarantee (10.6), ife is diferentiable in v.

Proof. In view of earlier results and, in particular, Proposition 10.16, we need
to show (1) that ifu is continuous (and all that other stuff), its expenditure
fanction satisfies property (10.7), and (2), ife satisfies (10.7) (and all that other
stuff), then its u (defined in (10.6)) is lower semi-continuous.

Taking these in order: Suppose u is continuous (and nondecreasing, quasi-
concave, etc.); let e denote the corresponding expenditure finction. Fix some x°,

v, and, €, such thatp 30 Ze(p, v +€) for allp € [PE . Then fom

Proposition 10.14, u(x®) > v + E. Therefore, there exists 6 € (0, 1) such that
u(@x"%) > v+ €/2. Therefore, forall p € Rk ,op - X=p- (060 >ep, v+E
/2) > e(p, v). That takes care of the first part.

For lower semi-continuity of a constructed u, fix a point x° and let u(x") =
W. Let {¥"} be a sequence of points with limit x°. Since u(x") = °, for every €
>0, ifwelet v=1"—2F, then p - X" > e(p, v+ €) = ep, W — E) Borall p €
Rk . So, by (10.7), there exists 0 < J < 1 such that dp - 0> e(p, v) for all p

S R-"f . Since ¥' — x° and all the components of all the x are nonnegative,

we know that for sufficiently large N, ¥ >6x° forall n > N. But then p - X" >p



(06X =8p - X" > e(p, v) for all p, and therefore, for all n > N, u(x¥") >v =10 —
2. Since £ is arbitrary here, lim infu(x") >v’ = u(x"), which demonstrates
lower semi-continuity.

So what is the bottom line? Ifthe criterion were mathematical elegance, my
vote would be for the Krishna and Sonnenschein approach, which provides a
nice duality between upper semi-continuous utility functions and lower semi-
continuous expenditure functions. But continuity of preferences is pretty
intuitive on economic grounds, or so it seems to me, so I vote for Jackson’s
necessary and sufficient condition. You are, of course, entitled to your own
opinion on the matter.

10.8. Connecting the CP and the EMP

We are almost ready to get back to the consumer’s problem and Marshallian
demand, which will justify all the work we’ve done in this chapter. But there is
one further bit of preparation to do: We have to connect the consumer’s utility-
maximization problem with the consumer’s problem of minimizing
expenditure.

Proposition 10.18. Suppose the consumer has locally insatiable and
continuous preferences. Then:

Joreveryp € [k andy € [¥% H(p, wp, y)) = D(p. y) and elp, vp. y))
= y;and

for everyp € R andv € [u(0), ), D@, elp, v)) = H(p, v), and v(p,

e, v) =

‘When rendered in symbols, this looks complex. But it couldn’t be simpler. To
paraphrase, solutions to the CP are the same as solutions to the corresponding
version of the EMP.

If we were willing to substitute “proof by picture” for a real proof, the
commentary surrounding the proof would go something like, The point where
the indifference curve and the iso-expense line just touch in panel a of Figure
10.1 (the solution to the CP) is the same as the point where the iso-expense line
and the indifference curve just touch in panel b of the same figure (the solution



to the EMP). As for a real proof

Proof. Fix p and y, and let x be any element of D(p, y), so that ux) = wp, )
by definition. Let V' be shorthand for u(x*) =Wp, y). Let 1" be any element of
H(p, V"), so that e(p, v)=p - h":

1.

Since u(x") = v", x" is Rasible for the EMP at (p, v'). Since 4" is optimal
for the EMP, this implies y>p - x" >p - h". Therefore, h" is fasible for the
CP at (p, y). Since uh®y =v' by Proposition 10.2d, B s optimal for the
CP. That is, 4" € D(p, y).

By local insatiability, B e D(p, y) implies that p - n* =y=p- x". Since
1" is optimal for the EMP at (p, v') and x" is Rasible, this implies that x" is
optimal (as well) for the EMP. That is, x' € H(p, v").

By definition, e(p, v*) = p - 4. The lefi-hand side is e(p, Wp, ¥)), while
the right-hand side is y by steps 1 and 2. Therefore, y = e(p, v(p, »)).

Going the other way, fix p and v € [u(0), 7). Let 1" be any element of H(p, v),

so that e(p, v)=p - h". Let y* be shorthand for e(p, v)=p - ", and let x* be any
element of D(p, y*)A

1.

3.

Since p - h* = y" by definition, 4" is fasible for the CP at (p, y°). Since x*
is optimal for the CP, this implies that u(x*) zu(h*) =v (the last by
Proposition 10.2d). Therefore, x" is Rasible fr the EMP at (p, v). Since p -
x Sy* =p- 1", this implies that x s optimal for the EMP. That is, X €
Hp, v).

By Proposition 10.2d, u(x*) =v. By the definition ofy", h" is Rasible for
the CP at (p, y*), and since u(k") >v and x" is optimal for the CP, 1" is
also optimal for the CP. That is, h* € D(p, y*).

Of course, u(h’) =v=u(x") = wp, ') = Wp, ep, V).

To build your understanding of this result and its proof, a useful exercise is

to ask, What can be said (along these lines) if preferences are not locally



insatiable? See Problem 10.6.
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problem, including a history of the development of these ideas. I repeat
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(who did this work as part of his undergraduate senior thesis) wrote at least in
part inspired by Krishna and Sonnenschein.

Problems
m *10.1. Provide full details for the proof of Proposition 10.2.
m!0.2. Give counterexamples to the ©llowing two false propositions. IfX is a

closed subset of R¥, then CCH(X) is closed. If X is a closed subset of Rk, then
CH(X) is closed.

m*10.3. In remarks fllowing Proposition 10.11, I note that Assumption 10.1
—that all utility functions are continuous and globally insatiable—is not needed
for Proposition 10.10 or for the first halfof 10.11. And in discussing the duality
between utility fanctions and expenditure functions, I asserted (quoting Krishna
and Sonnenschein 1990) that upper semi-continuous utility functions go with
lower semi-continuous expenditure functions. Suppose that we restrict attention
to utility finctionsu : [P —R fr whichu(0) = 0 and

5111::'£E-R5. i'L{;I‘} = i, (The first part of this involves an

innocuous rescaling of utility, but the second part assumes that preferences are
globally insatiable.) For such utility functions u, define e : Rk x R, — R by

e(p, vy=inflp - x:x € Rk such that u(x) > v}.

Show that ifu : RFF — R is upper semi-continuous, then e is continuous in p



and lower semi-continuous in (p, v).

m!10.4. Continuing with the setup of Problem 10.3, what about the rest of the
early propositions of this chapter, Propositions 10.2, 10.3, and 10.4? To what
extent do the various pieces of those propositions require some form of
continuity (full, upper semi-, or lower semi-) or local insatiability?

m!10.5. In Jackson’s statement of his basic result, which I’ve paraphrased in
Proposition 10.17, his definition of the class of utility functions U does not
include nondecreasing or local insatiability, but instead includes the condition
that each u € U is strictly increasing for strict increases in the argument (which
he calls “increasing”). Prove that the difference is cosmetic; that is, ifu : R

— R is continuous, then u is nondecreasing and locally insatiable if and only if
u is strictly increasing for strict increases in its argument. (Hint: You may
remember something like this, if you did the problems for Chapter 2.)

| *10.6. Proposition 10.18 requires that the underlying utility function u is
continuous and locally insatiable. What can be proven along these lines if you
assume that u is not necessarily locally insatiable and is (only) upper semi-
continuous? What if you assume « is continuous but not necessarily locally
insatiable? What ifu is locally insatiable but (only) upper semi-continuous?

m!10.7. Fix a consumer with utility fanction u defined on Rk Suppose we say
that good i is normal if for all prices p € RFB and income levels y and y'

withy > y' >0, if x € D(p, y) and x' € D(p, y"), then x; > x';. Suppose we
simultaneously say that good i is Hicks-normal if for all prices p and utility
levels v and v' with v > v' > u(0), if h € H(p, v) and h' € H(p, V'), then h; >
h'. What can you say about the connections between normal goods and Hicks-

normal goods? Under what conditions, ifany, are the two concepts equivalent?

m *10.8. In the text, I suggested that a more tangible version of the EMP would
be the problem

Minimize p - x, subject to u(x) > u(:’) and x > 0,



where the parameters of this problem are strictly positive prices p and some
reference consumption bundle 0 e Rk Call this problem the MEMP(p, xo),

where the M abbreviates modified.

Similarly, for strictly positive prices p and a bundle Qe Rk, consider the
following modified consumer’s problem: -

Maximize u(x), subject top - x<p - * and x> 0.
In words, maximize the utility of consumption, subject to the constraint that the

amount spent is no more than the cost of the bundle x’. Call this problem the
MCP(p, x°).

Assume that the consumer’s preferences are given by a continuous utility
function u. Ifx? is a solution of the MEMP(p, 10, is it (necessarily) also a
solution of the MCP(p, xO)? What about the converse? If one or both of these is
false, can you give conditions under which the statement

A solves the MEMP(p, 1) ifand only ifx¥ solves the MCP(p, xo)

is true?
m10.9. Suppose we define e : Rk x Rk, by

ep, %) = inf p-x:iux)> u(@®);.

In the spirit of this chapter, develop a theory concerning this modified
expenditure function. To keep matters relatively simple, assume that u is
continuous, nondecreasing, quasi-concave, and locally insatiable.

’ 1

! In a similar manner, we could reformulate the CP as, “At given prices p,
what is the best bundle you can purchase if your income is just sufficient to

purchase the reference bundle +°; that is, for y=p- v



2ct Proposition 9.24h; CCH(X) was used there, but was not set out in a
formal definition.

3 To foreshadow some later developments, what if u were only upper semi-
continuous?

4If you consult Jackson (1986a), you’ll see that I’ ve changed the statement of
his theorem somewhat. Some changes are cosmetic: He assumes 3 = c. But
where I say that u is nondecreasing and locally insatiable, he says that u is
strictly increasing for strict increases in x (and continuous). On this point, see
Problem 10.5. Note that Jackson’s result also gives equivalent conditions on
indirect utility fanctions; we’ll discuss this in the next chapter.



Chapter Eleven




Classic Demand Theory

This chapter provides some return on the hard work of last chapter, describing
how, in principle, one could start with consumer demand—that is, the solution
to the CP for all prices and income levels—and recover the consumer’s
preferences. Along the way, we get several important results ffom the theory of
consumer demand: Roy’s Identity, the Slutsky Equation, and the Integrability
Theorem (although the Integrability Theorem is given informally only). And we
do for the indirect utility function the sorts of things we did for the expenditure
function last chapter.

11.1. Roy’s Identity and the Slutsky Equation

Assume that we have a consumer with strictly convex, continuous, and locally
insatiable preferences. Continuity guarantees that the CP and the EMP have
solutions for strictly positive prices, and strict convexity guarantees that those
solutions are unique, so it makes sense to speak of the Marshallian and Hicksian
demand functions, (p, y) — d(p, ) and (p, v) — h(p, v), respectively.

We know from last chapter that uniqueness of the solution implies that the
expenditure finction e(p, v) is differentiable in p, holding v fixed, and that

de
] = h-.n{ i 1-':'.
&p“i ip,u) >

We assume, at least for the time being, that the indirect utility fanction (p, y) —
Wp, y) is also differentiable (jointly in p and y), and that both the Marshallian
and Hicksian demand functions are differentiable, Marshallian demand in both
arguments and Hicksian demand in prices.

Consider the identity Wp, e(p, v)) = v. That is, the indirect utility at prices p
and the income level sufficient to get you utility level v at those prices is v.
Differentiate this identity with respect to p;:

dv  Ov E
ap; . dy dp;




Replace 0e/Op; with /; = d; (for the corresponding arguments) and solve for d;, to

get
gu;
Roy’s Identity: di(p,y) = — a—i

dy lpa
Consider the identity dj(p, e, v) = hj(p, v). Differentiate both sides with
respect to p;, to get

ﬁdj _éi'{i_a_i I'Z?E! s ah_;

dp; Ay Op;  Opi

Replace 0e/Op; with /; = d;, and you have

The Slutsky Equation: Sﬁ = i_h i, t;_ﬂir .
Pilgw  “Pilpuipu Y o

Intuition, step 1: Hicksian demand as compensated demand

Of course, we should at some point justify all the assumptions concerning
diferentiability that we just made. But first, let’s look for the economic
intuition behind Roy’s Identity and the Slutsky Equation.

Intuitive explanations begin with the notion ofcompensated demand.
Imagine a consumer who faces prices p with income y and selects the bundle x.
If the price of some good, say good i, rises, we can think of two things having
happened to the consumer.

1. The relative prices of the various commodities have changed. Relative to
the price of all the other goods, good i is more expensive.

2. The consumer’s real income has declined; that is, her y units of income are
no longer sufficient to buy the bundle of goods she purchased before, as long
as x; > 0.



Suppose we want to isolate the effect of a shiff in relative prices ffom the
real-income effect, in terms of her utility and/or the amounts of the various
goods that she consumes. A strategy for doing this is to compensate her for the
increase in p;, by increasing y so that her “real income” is what it was before.
By how much should we increase y so that this is so? What does it mean to
restore her to her old real income? Economists give two answers:

1. Slutsky compensation involves giving her enough income so that she can, if
she wishes, buy back her old optimal bundle x. That is, ifp’; is the new

price of good i, replace y with y +(p’; — p,)x;. Another way to say the same

thing is to define Slutsky-compensated demand, starting from the bundle X,
as the demand function

s(p;a°) = dip, p - 2°).

In words, Slutsky-compensated demand at the bundle A and prices p is
Marshallian demand at p and just enough income to buy x°, or p - x. Note
that, at the new relative prices, the old optimal bundle, while affordable,
may no longer be optimal. To the extent it is not, the consumer can
increase her utility beyond what she had at the original prices and
corresponding optimal bundle; in symbols, ifx" = d(po, yo), then u(s(p; xo))
>wp, »°), and a strict inequality is a real possibility.

2. Since, in this sense, Slutsky compensation may over-compensate the
consumer, economists also look at Hicks compensation, which involves
giving the consumer just enough income so she can, if she optimizes,
exactly maintain her utility level. In symbols, ifthe consumer, facing prices
p° with income ° attains utility level w(p®, %), and if prices change to p,
then Hicks compensation gives the consumer the income level y that
enables her to remain at this utility level. This is y = e(p, v(po, yo)), and the
consumer’s choice ofbundle is d(p, e(p, wp°, y*) = h(p, wp°, ). In other
words, if we begin from p0 and yo, at which point the consumer achieves
utility level v) = wp?, )9), Hicks-compensated demand is simply h(p, °),
or Hicksian demand. Hicksian demand is a form of compensated demand.



Figure 11.1 shows all this in a picture.

Good 2

original budget line
icksian compensation budget line

A
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Figure 11.1. Hicks and Slutsky compensation. The consumer begins at
the point marked A, with an optimal consumption bundle for given prices
and income. This consumer’s budget line is the solid line passing
through A. Suppose the price of good 2 rises. The budget line pivots to
become the line with long dashes. To compensate the consumer
sufficiently to put her back on her original utility level—Hicks
compensation—we have to push the new budget line up to the position of
the line with medium dashes, and the consumer chooses the Hicksian
demand point marked B. To compensate the consumer sufficiently to
allow her to buy her original optimal bundle—Slutsky compensation—we
have to push the budget line still further, to the line with the short dashes;



the consumer then chooses the bundle marked C. Note that C is preferred
to B and A, which are indifferent to one another.

The intuition for the Slutsky Equation and Roy’s Identity

Now we can give the intuition for the Slutsky Equation. We are thinking of a
consumer who chooses x = d(p, y) at prices p and income y. The price of good i
rises, changing relative prices and the consumer’s real income. By how much
does the consumer’s consumption of good j change? First, the change in
relative prices changes the consumer’s demand for good j. Since Hicksian
demand is compensated demand, it isolates this relative-price effect:

» The relative-price part of@dj/é’pl- is 6h/8pl-.

The real-income effect, on the other hand, depends on the rate at which a rise in
the price of good i decreases the consumer’s real income. If the consumer was
consuming dp, y) units of good 7, and if the price of good i increases by, say, a
penny, then the consumer is d{p, y) pennies poorer; to get back her old amount
of good i, she needs to economize by d{p, y) (in monetary units) somewhere
else. Therefore,

* The real-income part of 6d/6pi is —d{p, y) x 0d/0y.

The total rate of change in the consumption of good;j per unit change in the
price of good i is then the sum of these two pieces, which is precisely the
Slutsky Equation.

Before turning to Roy’s Identity, it may be worthwhile to think about the
same thing in terms of Slutsky-compensated demand, or s(p, 10y = dp, p - xo).
Assuming that everything in sight is diferentiable, the chain rule tells us that

38 7 i")d”., 0 Cjﬂr g
= =i T
dp; dp; Oy

Rearrange terms, and you get the Slutsky Equation, except that oh/0p; is



replaced by 6s/6pi, at least if Slutsky-compensated demand is based at the
optimal consumption bundle at the prices and income at which you are taking
these derivatives. Hence, these two partial derivatives are identical; Slutsky- and
Hicks-compensated demand are ““identical” for infinitesimal shifts in price.

As for Roy’s Identity, the question is, What impact does an increase in the
price of good i have on the utility the consumer obtains? Again think in terms
of the change in p; as affecting relative prices and the consumer’s real income. If
Hicks compensation and Hicksian demand capture the relative-price effect, then
clearly the relative-price effect on utility is zero, by definition. But the
dimunition of the consumer’s real income has a first-order effect. If she had been
consuming x; units of good i and the price of good i goes up by a penny, her
real income is reduced by x; pennies. (Yes, you did just read this two paragraphs
ago.) Hence

v v

= o
J p; S dy

which is just Roy’s Identity rearranged.

11.2. Differentiability of Indirect Utility

From Chapter 10, we know that the expenditure finction is differentiable if the
EMP has unique solutions (and vice versa). In this section, we prove that if the
CP has unique solutions and ifu is continuously diferentiable and locally
insatiable, then the indirect utility function is differentiable. Moreover, our proof
will identify the derivatives, providing a proof of Roy’s Identity under less
restrictive assumptions.

Proposition 11.1 (Differentiability of the indirect utility function and its
derivatives). Suppose u is locally insatiable and continuously differentiable. If
the CP has unique solutions in an open neighborhood of(po, yO), y0 > 0, then
the indirect utility function v is differentiable in (p, y) in that neighborhood.
Writing xofor the solution to the CP at (po, yo), the derivatives (at (po, yo)) are



i s 4 wOu
s — 1 _|:| s ]
dp; (0,40 P di-_? i
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for the same j.

Corollary 11.2 (The value of the budget-constraint multiplier). If' u is
locally insatiable and continuously differentiable, and if the CP has unique
solutions in a neighborhood of some (p°, y°), then the Lagrange multiplier 1
for the budget constraint in the firstorder/complementary-slackness necessary

conditions for the solution to the CP at (po, yO) is
\ v
Yl

Corollary 11.3 (Roy’s Identity). If u is locally insatiable and continuously
differentiable, and if the CP has unique solutions in a neighborhood of some

(po, yo), then Roy’s Identity holds:
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Before proving the proposition, some comments are in order.

1.

The assumption that  is continuously differentiable in this proposition was
unnecessary in the proof of Proposition 10.6 (differentiability of the
expenditure function). In Proposition 10.6, we were concerned with
diferentiability in p only; the shape ofu matters because it determines the
shape of the set {x : u(x) >v} for each fixed v, but continuity ofu is all that
is needed. If we wanted to talk about differentiability of the expenditure
function in v, however, we would need to assume more about u. (See
Problem 11.2.)

. As long as u is locally insatiable, we know (ffom Proposition 10.18) that

the CP has a unique solution precisely where the EMP has a unique
solution. Hence, differentiability ofv is essentially equivalent to
differentiability ofe. (I append essentially because we need continuous
diferentiability of u for one but not the other. But assuming differentiability
ofu is rarely a problem for economists. On the other hand, here we are
showing differentiability ofv in p and y jointly; Proposition 10.6 shows
diferentiability of e in p only.)

In Roy’s Identity, the possibility that the denominator (the partial
derivative of indirect utility in income) equals 0 is real. But the proposition
establishes that when this happens, the numerator is also zero, and in the
sense that 0/0 can be anything, Roy’s Identity follows immediately from
the proposition.

Corollary 11.2 is a simple consequence of the proposition, once we recall
that for any good; that is consumed in strictly positive amount (at the
optimal solution to the CP), the first-order condition is that ou/0x; = Ap;.



5.

If we accept that the derivatives in the proposition exist, their values are
relatively intuitive. Begin with 0v/0y. This is the rate of increase in utility
obtained per unit increase in the consumer’s income. So the question is, if
the consumer has $1 more income, how should she spend it? Obviously
(intuitively), this extra $1 should be spent on goods that give the biggest
bang for the buck. But we know that the goods consumed in positive
amounts at x* have equal bangs for the buck, at least as great as the bangs
for the buck of'the other goods. So the answer is clear: The marginal $1 can
be spent any way the consumer chooses, as long as it is spent on goods
that are already consumed in positive amounts. And ifit is spent this way,
v will increase by approximately this bang for the buck; that is to say, 6v/0y

= MUi(xO)/pi for any and every i such that _r':' > 0. (This argument should
be vaguely familiar; it appears in Chapter 3.)

. Asimilar argument works for 0v/0p;. If p; rises by one unit, to stay budget

feasible the consumer must cut back on her consumption. She obviously
can’t cut back on the consumption of goods whose current level is zero.
And to a first-order approximation, it doesn’t matter how she cuts back on
the other goods, as long as she does so to stay budget feasible. When p;
0

must economize by spending J"U less on some package of goods.

0 unit

increases by one unit, her old bundle costs - more than she has, and she

Therefore, a one-unit rise in p; has the same marginal impact as an 7

fall in income. This gives 6v/Op;.

. As long as we are offering these intuitive explanations, we can offer one as

well for 0e/0p; = h;. Suppose the price of good i increases by one (small)
unit. If4; = 0 at the original prices, no change is called for; the change in p;
has no impact on her expenditure. But if#; > 0, perhaps she will wish to
consume less of good i and more of other goods. Since the bangs for the
buck of all other goods (at least, of those that are consumed in positive
amounts) are all equal, the cost of replacing any lost utility will, to the first
order, match the savings realized by consuming less of others. That is, to a
first-order approximation, she might as well stay at the bundle optimal at



the original prices. And then the impact ofa one-unit increase in the price of
p; is to raise her expenditure by 4.

8. The proposition does not cover the case of y, = 0, because in that case no
commodity index ;j has _r':'__:' > 0. See Problem 11.2.

The Proof of Proposition 11.1

Warning: This proofis a grind. It is not complex, but since it has many steps,
it may seem so. Following all the details, I summarize its plotline, and you
may do better to read that summary before launching into the details. (If anyone
can suggest how to make it less ofa grind, I would love to hear about it.)

Fix (pO, yO) in the open neighborhood in which the CP has unique
solutions; let x° denote the solution to the CP there. Local insatiability implies
p° - % =39 and hence, since }° > 0, that x° # 0. Pick any nonzero component
ofxo; for expositional convenience we will assume it is the first; that is, xol >
0. To save on space later, let u' be the gradient finction ofu, and let u’; be its
ith coordinate; that is, u(x) = (Ou/0x)|,. And let by = u’l(xo)/pl; b is a
mnemonic for “bang for the buck.” (If you’ve forgotten what this is, see page
61). Also, let é e R+k be the bundle of one unit of commodity 7; that is, e"j =
1 ifi = j and = 0 otherwise.

Now suppose {(p",)")}, - 1,2, ... 1s a sequence of price and income vectors

that has limit (°, °). We need to show that

o™y v ) Y - (™ -y — ot
lim (", y") —v(p',y) fﬂflt .J)DU Py -J:o,
n ™ = 1%y — )|

where v’(po, yo) is the gradient of v, as given in the statement of the proposition.

Eventually this sequence lies within the open neighborhood of (p°, 3°) in
which solutions to the CP are unique; to simplify, we’ll assume this is true for
all n. (We only need to prove things about the tail of this sequence, so this



assumption is innocuous.) Let ¥ be the unique solution ofthe CP at (p”, ).

The next step is, for each n, to adjust x so that it just exhausts the budget
' at prices p" and to adjust each X so that it just exhausts the budget y° at
prices po. These adjustments are done by varying the amounts of commodity 1
that are consumed; it is important here (to maintain feasibility) that xO1 >0,
that X', > 0 for all sufficiently large n, and that the adjustments are small for
large n. First, for each n, let

i i3
S, By SR =l
& a— LT E1.
i
Py
Note that p” - 2 = p" - X0+ /' — p" =)". And let
a 0 _.n
P _.I.til =k )
L =1 T —;.':' €1.
P

Note that p° - (" = p° - ¥ + 37 — p0 - ¥" = 0. Therefore, as long as (" >0, it is
feasible at prices p® and income y°, while ifz" >0, then it is fasible at prices p”
and income )”'. And, therefore (assuming z” >0 and (" >0),

") = ule) 2 (™ and w(" ") =u(z") 2 u(z"). (11.1)

As a consequence of Proposition 3.3b (Berge’s Theorem for the CP), lim,,
X" = 1t is then obvious (since lim, y' = W, lim, p" =p0 p" - ¥ =) and
pO ey :yo) that for n far enough out in the sequence, z” > 0, {" > 0, and lim,
" =lim, {" = 1. As before, we will assume that 2 > 0 and " > 0 for all n;
this is still innocuous, and for the same reason.

Next we apply Taylor’s Theorem, to evaluate u(z"), and u("), the first in
terms of its variation from u(xO) and the second in terms of its variation from



u(x"). Rather than using Taylor’s Theorem with a remainder term, we use the
intermediate-value version of Taylor’s Theorem, to get

. Uﬂ_pnlxc- . ) . .
u") = u(a) + (") ————, forsome " = 3"2" + (1~ 3"):", 3" € 0,1],
Ui
and
‘N i i EIJ—}jDI.'['n [ eﬂ fi it w0
ul(") = ulz™) + (" )T forsome (" ="2" + (1 -1™(". 1" € [0,1].
i

Apply the two inequalities in (11.1) to the last two displays. From u(xo) >
u(l™), we get

1] T
- B o -
w(x®) = u(x™) + (™) .
M
and fom u(x") > u(z"), we get
—p". _1_.6
u(z™) = u(z") + u; (u”'} e
Py
These two inequalities can be rewritten as
0 0,0 i n, 0
o Y=ploz i o R
(L sy i (1))
B n

We want to show that



v(p™,y") — v, ) -V ) (0" - Pyt - )
™ = 1%y — )|

We know that w(p", ¥") = u(x), and vp’, 1*) = u(®). So we can rewrite the
limit just displayed as

i (™) <zt — v’{;?”:: y?) - {1'3'*; ==
n ™=, 5™ =30

The third term in the numerator, —v' (2, 1) - (o — p°, ' — 10), is

=0.

lim
n

I[‘u
= {Z(—a%)bﬂpf & pg) + by(ya - 1)

i=1

=—b {yﬂ, —p 2’ -l 4y :r:a} :

which is —b,(0 — p" - 1), where (recall) by = u'l(xo)/pl. So, rewriting our
objective once again, we need to show that

. uz"™) —u(@®) - by - p* - 2%
lim =0 113
n 1™ = #,y™ = 9| )

We do this using the two inequalities in (11.2).
From the right-hand side of (11.2), we know that the limit infimum in
(11.3) is greater than or equal to

uy (Z) " — p* - 2%)/pf — by(y™ —p" - 2%)
@™ — 2w — )|

lim inf,,

We can rewite this as



“ﬁﬂ_h y" —p
pr (@™ — %, ™ — %)

Because z" has limit xo, pi‘ has limit E}?, and u is continuously differentiable,

lim inf,,

the first term inside the square brackets converges to zero. And the second term
is bounded in 7: Note that ' — p" - x = (p" — p°, 1/ =39 - (=°, 1) (you do the
algebra), so [y — p" - X <[|(" = p°, " = O] [1(=x", 1)|], so the second term
is bounded by H(—xo, 1)]|. Therefore, the limit infimum of the sequence in
(11.3) is greater than or equal to zero.

Now we’ll show that the limit supremum is less than or equal to zero
(which establishes that the limit is zero, finishing the proof). We use the other
inequality from (11.2), to bound the limit supremum above by

W/ — P - ) — by(y" — p” - 20)
" — % y™ — )|

Add and subtract bl(yo - p0 - ¥") to the numerator, to get

lim sup

Y - ) bl - ) b - ) - b - )
6"~y -

The limit supremum of a sum of two terms is less than or equal to the sum of
the limit suprema of two summands, so look separately at

lim sup,




—(h(™/ 0~ 1 2 + b - P )
- and
(e —p“~:t:“ ~ )|

lim sup

—by (@ —p' -2 - by(y" - p" - 2")
" — P g™ — )| '

lim sup_

The numerator in the second ofthese two terms can be rewritten
b4y - - ) = b e - 2 - " )
= by’ - p")- (e - 2")

and so the second ofthe two terms is

I o Gl o
™ — p% y™ — )|’

which is bounded above in absolute value by

lim sup_

s llp” —p"| o_.n
fim sup, E}lll{;?”—p'ly“—yﬂlll ===\

The first term (—b;) is constant, the second term (the ratio of the norms) is

bounded above by 1, and the third term vanishes as n goes to infinity. So this
part of the limit sup is bounded above by 0.
This leaves us with



—(uy (/) = 7™ + b — 5 - 2")
(™ — ™ — 49|

lim sup_

This can be rewritten

i Fn 1 0 __ il'3- .t
lim sup_ [{ by — 1{%, ) o F
" o 1™ — £ v — 9|

. . . . - .
The first term vanishes as 7 goes to infinity, since 12 converges to x and u is

continuously differentiable. And the second term is bounded: rewrite the

numerator as (p" — p°, Y — ") - (¢", —1) and bound the inner product by the

product of the norms, noting that X" is converging to x°.

Whew! That was indeed a grind but, if you look for the big picture of the
proof and, in particular, compare with the proof of Proposition 9.22
(differentiability of the profit function), the basic idea of the proof is pretty
simple. Recall how the proof of Proposition 9.22 went: We were looking at a
sequence of prices p” with limit po, and we pulled out the optimal production
plan 2" for p” and the optimal production plan z° for p°. Then we looked at two
inequalities:

T T

pt -2t >p".2' and p -2">p -2".

In words, at the price vector p”, the production plan that maximizes profitat p”
is at least as profitable as the plan that is profit maxmizing at p°, and vice versa.
Those two inequalities, plus judicious use of Berge’s Theorem (if solutions are
unique, they define a continuous finction), applied with brute force to the limit
that defines the derivative of z, gave the result.

We are doing, pretty much, the same thing here. The key step is getting the
corresponding two inequalities, which are the two inequalities in (11.2). Once



we have those two inequalities, we apply them to the limit that defines the
derivative of v with sufficient brute force (a bit more than back in Chapter 9), and
out comes the result. Two things make the proof harder: First, the objective
fanction back in Chapter 9 is the bilinear formp - z. So evaluating the
diflerences p® - 20— p® - 2" and p" - 2" — p" - 20 is straightforward. In this case,
we need to apply Taylor’s Theorem to evaluate those differences in a way that is
useful, which in tum is why we need the assumption that u is differentiable.
And back in Chapter 9, the feasible set doesn’t change as prices change. Here it
does, and so when we compare A with ¥ in deriving the two inequalities, we
first have to adjust x to fit the problem (p”, ') and we have to adjust " to fit
the problem (po, xO). Notice, though, that we do all our adjusting through
adjustments in the consumption of good 1, under the hypothesis that, in X, xol

> 0. That tells us (1) that when the adjustments are small, the adjusted values
will still be nonnegative. And (2) we know from back in Chapter 3 that small
adjustments in consumption levels to fit small changes in price or income are
all equivalent (to the first order) as long as we change the levels of goods with
the greatest bang for the buck, which are those goods that are consumed in
strictly positive amounts. The proof takes a lot of steps and manipulation of
symbols, but there is nothing especially deep in all those steps.

11.3. Duality of Utility and Indirect Utility

The climax of Chapter 10 is Proposition 10.17, showing a duality between
expenditure functions that conform to a list of properties and the class of
continuous, locally insatiable, nondecreasing, and quasi-concave utility
functions. In this section, we match that result, for indirect utility functions.

Proposition 11.4. Suppose that u is a continuous and locally insatiable utility
function. Then v, the indirect utility function generated from u, is continuous,
strictly increasing in ) nonincreasing in p and strictly decreasing for strict
increases in p if y > 0, homogeneous of degree 0 in (p, y), quasi-convex in (p,
y), and satisfies V(p, y) = u(0) if and only if y = 0. Moreover, limy_mc wp, y) =

S”Pxekk-;- u(x) for all p € R.ri 3



Proof. Proposition 3.3 established continuity and homogeneity of degree 0 in
(p, ¥). To show that v is strictly increasing in y, fix (po, yO), and let X be any
solution of the CP at (po, yo). Of course, p0 X0 :yo. For any )’ > yo, local
insatiability ofu ensures that there exists x' (close to x°) such that u(x) > u(x)
and po - x' <y, and therefore v(po, V) >ux) > u(x®) = v(po, yO)A

Ify = 0, then it is obvious that Wp, y) = u(0) for all p; the only bundle that
is affordable is 0. And then, if y > 0, we know from the previous paragraph that

v, ») > vp, 0) = u(0).

To show that v is nonincreasing in p, fix (°, %) and let p’ > p°. Then {x €
Rk px<y S {xE Rk :p% - x <)% But wp', 1) is the maximum of
u(x) over the first of these sets, and v(po, yo) is the maximum over the second
set. Maximizing over a larger set must produce a maximum at least as large:
W’ %) 2! )0).

Now suppose, in the notation of the last paragraph, that y0 > 0 andp'is a
strict increase overpo. Let D(po, yO) denote all the solutions of the CP at (po,
39), and let x’ be any solution of the CP at (p/, yo). Of course, because of local
insatiability, p° - x =" frall x € DE°, )°), and p’ - ' =1°. Since we know
(now) that v(po, yo) > u(0), we know that every x € D(po, yo) is nonzero. This
implies, since p'is a strict increase on p*, that p"- x > p¥ - x = )0 for every x €
D(°, )°). Therefore, no x € DY, 1°) is Rasible at (p’, %), which implies that
x € D(po, yo). But po “x'<p' x’:yo, so x' is feasible at (po, yO); since it is not
a solution of the CP at (po, yo) but is feasible, it must provide less utility than
do members of D, 3°). That is, wp, 1) =u@) < wp° »°). (Can you
construct a proofusing the homogeneity properties of v?)

Since v is strictly increasing in y, limy_m Wp, ) exists and is the same as

sup e gk, Wp, ). Since the CP has a solution for every set of parameter values,
for any (p, y) there is some x such that W(p, ) = u(x), and hence sup, ¢ gk, Wp,
y) <sup, Rk + u(x). To get the reverse inequality, suppose X" is a sequence of

bundles whose utilities approach Sup, e gk, u(x) in n: For any price p, let y' = p



- ¥, and we know that Wp, ") > u(xX) (since X" is Rasible); therefore supy, e gk,

Wp, ) = u(xX); taking n to infinity does it.

Finally, there is quasi-convexity: Fix (p, »), (¢ »"), and a € [0, 1], and let
(p", ¥y =alp, y)+ (1 -a)p’ y). Suppose x" is a solution ofthe CP at @" y".

I assert that x” is either Rasible for (p, y) or for (p’, ). Nonnegativity ofx" is
not a problem, so the only way x" could be infasible for both (p, y) and (p »")
isifp-x">)andp’-x">y. But thena(p - x) + (1 — a)p' - x) > ay +(1 —
a)y', which is p" - x> y", contradicting the assumption that x"is optimal, and
hence feasible, at (p”, »").

But ifx" is fasible for (, »), then u(x*) <wp, y) <v. Similarly, ifx" is
Rasible for (p) ), u(x") <wp’ ) <v. One of these must hold, so u(x") = wp",

y") <max{vp, ), Wp', »")}; hence v is quasi-convex. -

Recall that for a set X & Rk+, CCH(X) is the comprehensive convex hull of
X.

Proposition 11.5. Suppose that u and u' are two continuous utility functions
defined on RF 1. Let v denote the indirect utility function defined from u, and let

V' be the indirect utility function defined from u'. Then v = V' if and only if, for
allv € R, CCH({x € J{¥%:u()>v})= CCH(Ix € % :u@)>v}.

Corollary 11.6. If v is an indirect utility function derived from a continuous
utility function, then it is the indirect utility function for a continuous,
nondecreasing, and quasi-concave utility function, namely the function i
derived from u via defining equation (10.1). And if v is derived from a utility
function that is moreover locally insatiable, then the corresponding 1 is also
locally insatiable.

Proof. Suppose that u and ' are continuous utility finctions such that, for all v,
CCH({x € J?%:u()>v})= CCH(ix € J% :ux) >v}). Fix a price vector

p and income level y, and let j. be a solution to the CP for u at (p, y). Letting v



= u(i), it is obvious that .E. € CCH({x € Rk u(x) >v}) and, therefore, j.
€ CCH({x € % 1u () >v}). That is, - = E ey, for some

vectors x', ..., ¥ such that u(x) >v fori = 1, ..., n and nonnegative scalars o',

..., d" summing to one. I assert that p - ¥ <y for at least one of the i’s; were
this not ) so, ] then
p-i 2o (Yas)y=Y alp: ) > ¥ ay=y
, and }. would not be fasible for (p, y), a contradiction. But for that x such that
p - ¥ <y x'is Rasible, so vip, y) = u'(d) > W, By a symmetric argument, Wp,
y) 2V(p, »), so they are equal for all p and y.

Suppose, conversely, that # and u’ are continous such that, for some v,
CCH({x € Rk tu(x) 2 v}) # CCH({x € Rk :u'(x) > v}. Without loss of

generality, suppose s in CCH({x € Rk : u(x) >v}) but is not a member of
CCH({x € Rk T u (x) >v}). By the usua_l argument, we can strictly separate
x¥ fiom the closed and convex set CCH({x € Rk T u'(x) > v}); that is, for
someq € RF, g - X< inf{g-x:x € CCH({x € Rk s u'(x) = v})}. Since
CCH({x € Rk 1 u'(x) > v}) is comprehensive upwar(;s, g > 0, and we can

perturb ¢ slightly so that it is strictly positive and still have the inequality. Let
p be the strictly positive perturbation ofg; that is, p is strictly positive and
satisfies p - 0 < inf{p-x:x € CCH({x € Rk cu'(x) >v})}. Now lety =p

- x%. For the CP with parameters p and y, 10 is asible. Since x’ € CCH({x €
Rk cu(x) > v}), by the argument ffom the previous paragraph we know that

there is some X’ such that u(x') > v and X' is fasible at p and y. Therefore, W(p, y)
>u(¥’) >v. On the other hand, for every x’ such that u'(x") > v, we know x’ €
CCH({x € Rk :u'(x) >v}) and, therefore, p - x' > y, so x’ is not fasible for

(p, »). Therefore, v(p, y) < v. The indirect utility finctions are different.

The corollary is obvious given developments ffom last chapter. -



The next step in the progression is to describe how to invert an indirect
utility function, to recover “the” utility function that generated it. Based on the
results just given and results fom Chapter 10, we recover the original utility
function if that function is nondecreasing and quasi-concave (and otherwise we
recover ““its” CCH-equivalent utility function).

Proposition 11.7. Suppose that v is an indirect utility function for a
continuous, nondecreasing, and quasi-concave utility function u. Then, for all
X,

u(z) = max{v € R:v(p,p-2) > vforallpe R* }. (11.4)

Proof. Fix 0 e Rk+. Since X is feasible for the CP at the parameter values p
andy =p - X% wp, p - 2% > u@®) for all p. This implies that v0 = u(x?) is
among the values in the set on the right-hand side of (11.4). Therefore, the
right-hand side of (11.4) is at least as large as u(xo).

Now take any v' > u(xo). We know that X0 ¢ {x € Rk T u(x) >v'} and that

{x € Rk tu(x) > v'} is closed, convex, and comprehensive. Hence, by the

usual argument, we can produce a strictly positive p° such that p° - x* < inf {p°
- x : u(x) >v'}. Therefore, if we look at the CP with the parameter values pO and
y=p" 2%, we know that no x such that u(x) >V’ is Rasible, and wp°, p° - x%) <
V. Since v is defined as a supremum, we must be careful with this argument:
The CP has a solution—denote it x™—at (°, p* - x9), and vp?, p° - x%) = u(x".
And, moreover, x* € {x € Rk : u(x) >V'}, since no point in {x € Rk s u(x)
>} is Rasible fr the CP at (p°, p° - x%). Therefore vp?, p° - x0) = u(x™) < v".

This shows that for every v'> u(®), vé {v € R: wp, p - ) >vorall p €
Rk }, and therefore the “maximum” (which you should regard as a supremum
until we prove that it is attained) on the right-hand side of (11.4) is no larger
than u(x").

And, since we showed in the first paragraph of the proof that W= is in
the set on the right-hand side, we have established both the equality in (11.4)



and that a maximum is appropriate.

The final question is: When is a candidate indirect utility fanction v actually
an indirect utility function? That is, when does a continuous (and, perhaps,
locally insatiable) utility function exist, which generates the candidate function
v? For the sake of notational convenience, assume that Wp, 0) = 0 and limy%OO

Wp, ) = oo for all p; this amounts to assuming that, if there is a utility fanction
that generated v, it has u(0) = 0 and sup, < RF; u(x) = oo. Then:

Proposition 11.8. Suppose that v : Rk xR, — R, is continuous, strictly

increasing in its last argument, nonincreasing in its “p”’ argument and strictly
decreasing for strict increases in the “p” argument when its last argument
(the “y” argument) is strictly positive, quasi-convex, homogeneous of degree 0,
satisfies (p, 0) = 0, and limy,_,, V(p, y) = o for all p. For ¥ € R, define

Xp={zeR*:v(p,p-2)> " forallpe R ). (11.5)

Then X,0 is closed, comprehensive, and convex. Also define, for x € RF_E,

u(z)=max{v € R:z € X,}. (11.6)

Then u is upper semi-continuous, quasi-concave, and nondecreasing. And if we
define v'(p, y) = max {u(x) : x € Rk, px<y}, thenv' = v.

That is, we get everything except lower semi-continuity (hence, continuity) of
the function u constructed fiom v. (As part of the proof, we show that the two
maxima embedded in the statement of the proposition are correct; that is, they
are suprema that are attained.)

Proof. Rewrite the definition of X0 as
mpER‘f-_{I E Rf > vip,p-x) = 1:':'}. Each set in the



intersection is comprehensive upwards because v is strictly increasing in its last
argument, so the intersection is comprehensive upwards. Each set in the
intersection is closed because v is continuous, so the intersection is closed.

Each set in the intersection is convex: Fix p and take any pair of bundles x'
and x” such that both x’ and x” are in {x € Rk “vp, p - x) 2. Wlo.g,
suppose that p - x'>p - x". Then for any scalar o € [0, 1], p - (ax + (1 — a)x")
>p - x", and since v is strictly increasing in its last argument w(p, p - (ax'+ (1 —
ax") >vp, p - x") >10. Hence ax' + (1 — a)x € {x € Rk “p, px) =0

And since each set in the intersection is convex, the intersection is convex.
This, then, establishes that each X0 is closed, comprehensive, and convex.

Fix x. Since vip, p - xO) is finite valued for every p, it is obvious that P
X, for some (finite and large) v. It is also clear from (11.5) that, ifx’ € X, then

0 e X, for all v <v. Suppose {V'} is an increasing sequence of real numbers
such that X0 € X,n for each n; we know that the sequence is bounded above, so
it has a limit, which we denote by W, Since vip, p - xo) > for every p, ol
course v(p, p - xo) >0 for every p. But then O e X,0. This immediately

implies that the max in (11.6) is appropriate. Moreover, u(x) > v if and only ifx
€ X,, so that the sets X, are the upper-level sets ofu. Since the X, sets are

closed, comprehensive, and convex, u is upper semi-continuous, nondecreasing,
and quasi-concave.

Fix po and y0 and consider the problem of maximizing u(x) subject to po X
0
=y

The set {x € Rk :p0 - X Syo} is compact, and upper semi-continuous
functions attain their maxima on compact sets, so there is some e Rk such
that p° x" <3% and u(x*) >u(x) for all otherx € Rk that satisfy p° - x <)°.

Letv' = u(x*) = v'(po, yo). We must show that v = v(po, yO).
Showing an inequality in one direction is easy: Since X € X*={x €

Rk vp, p X >v" for allp € Rk }, this is true in particular ﬁ)rpo. That



is, vp¥, p¥ - x") > v". Since P X <)% and v is strictly increasing in its second
argument, v(p°, ) > v

To show that v(po, yo) <v" takes a bit of an excursion. Recall that y— Wp,
y) is strictly increasing and continuous (and the range is [0, «)), so for each v €
[0, o) and p, there is a unique y € [0, o) such that v(p, y) = v. Denote this y
by e(p, v). The use of notation identical to that of the expenditure function is no
coincidence—this is indeed the corresponding expenditure function—but we
don’t need to bother verifying this fact. Some facts about this finction e are:

» For fixed p, it is the inverse function ofy — Wp, »). Sincey — Wp, y) is
continuous and strictly increasing, so is v — e(p, v).

» The function is nonnegative valued: e(p, v) > 0 for all p and v. Moreover,
e(p, 0) = 0 (since W(p, 0) = 0). And since y — Wp, ) increases to «, so does
v—ep, v).

* For fixed v, the function p — e(p, v) is homogeneous of degree 1: e(Ap, v)
must satisfy V(dp, e(Ap, v)) = v. But since v is homogenous of degree 0 in
both arguments, and Wp, e(p, v)) =v, we know that v(ip, ie(p, v)) =v.
Therefore, the unique value y that satisfies (Ap, y) = vis e(Ap, v) =y = de(p,
V).

» For fixed v, the finction p — e(p, v) is concave: Fix v, and take any pair of
price vectors pl andp2 and scalara € [0, 1]. Let y1 = e(pl, V) andy2 =
e(pz, v), so that v(pl, yl) = v(pz, ),2) =v. Because v is quasi-convex, v(apl +
(1 —ayp?, o' +(1 — ap?) <v. Therefore, since v is strictly increasing in its
final argument, e(onpl +(1 - oc)pz, v) > ayl +(1 - a)yz, which is concavity of e
in p.

* We have the identities (for each p) e(p, V(p, )) =y and Wp, e(p, v)) = v.

Now go back to our fixed pO and yo, and letv’ = v(po, yo). Let x be a
supergradient of the concave and homogeneous-ofdegree-1 function p — e(p, vo)
at p = p°. That is,

P’ =e@” M =y" and p-2’ > e(p.”)forallpe RE.



(We are using the homogeneity-of-degree-1 property of e in p to conclude that
the supergradient is linear, of course.) We know that x” is nonnegative: Ifx" had
a negative component, we could find a strictly positive price p such that p - x' <
0, contradicting the fact that e(p, vO) >0 forall p (and vO).

The equation po cx' = e(po, vO) :yo tells us that x" is feasible for the CP
with parameters p® and )°, and therefore v(p°, 1°) > u(x). The inequality p - x' >
elp, \°) tells us that Br all p, 0 = wp, ep, W) <up, p - x'), which implies that
x' € X0, or u(x) >0 = wp?, 19). Putting this together, v = u(x”) = v(p’, y°) >

u(x’) > W= v(po, yo). This finishes the proof -

Just as in Chapter 10, we nearly get everything we might want, but we can’t
show that, for a general candidate indirect utility finction v that is continuous,
thewu constructed via (11.5) and (11.6) is lower semi-continuous. The
counterexample we described in Chapter 10 is a counterexample here as well and
for the same reason: The point at which u fails to be lower semi-continuous is
never a solution to either the CP or the EMP for strictly positive prices, so it
doesn’t cause the expenditure function or the indirect utility function to be
discontinous.

And, just as in the case of Chapter 10, there are two ways to repair matters.
You can give up on continuity of utility functions, settling for upper semi-
continuity. This allows indirect utility functions to be upper semi-continous,
just as (last chapter) it gave expenditure finctions that can be lower semi-
continuous in v. For the details of this approach, see Krishna and Sonnenschein
(1990).

Or we can add a further regularity condition on our indirect utility functions:

Proposition 11.9. Suppose v is an indirect utility function generated by a
utility function u that satisfies all the conditions of Proposition 11.4. Then v
satisfies

For every 2 € B, if v > 0 and € > 0 avesuch ot v(p,p- 27) > v+ ¢
forall pe RE., then forsome 8 € (0,1),u(p,dp-2) > v forall p.  (IL7)



Conversely, if v is a candidate indirect utility function satisfying all the
conditions of Proposition 11.8 and (11.7), then u defined from v via (11.5)
and (11.6) is continuous.

Condition (11.7) is due to Jackson (1986a). You should have no problem
proving this proposition on your own, if you follow the model of the proof of
Proposition 10.17; you are asked to do this in Problem 11.4. Please see
Problem 11.5, as well.

11.4. Differentiability of Marshallian Demand

Conditions that guarantee differentiability ofthe two value functions (the indirect
utility and expenditure functions) are relatively straightforward; uniqueness of
the solution (essentially) yields diferentiability of the value function. Moreover,
diferentiability of indirect utility is what we need for Roy’s Identity. But to
derive the Slutsky Equation, we need to know that the Marshallian and
Hicksian demand functions are differentiable. We can provide conditions
sufficient to guarantee this, but they are significantly less attractive. I cover the
differentiability of Marshallian demand in this section, leaving Hicksian demand
to you.

If we are to have any hope of showing that Marshallian demand is
differentiable, it first must be a function, and a continuous function at that.
Therefore, to begin this conversation, we must assume that the CP has a unique
solution, at least in some open domain of parameter values. (Of course,
continuity of the corresponding Marshallian demand function follows flom the
application of Berge’s Theorem.) So throughout this section, we maintain the
assumption that the CP has a unique solution throughout some neighborhood of

a specified point (pO, yO).

A motivating example

To motivate what comes next, consider the following simple example. Suppose
that £ = 2 and

u(xry, £2) = In(xzy + 1) + In{x, + 10).



Because u is strictly concave, we know that the CP will have a unique solution
for all p and y. Fix p; = p, = 1, and consider solutions to the CP as a function

ofy. Ifx; and x, are both strictly positive at the solution (for given y), the first-
order conditions tell us that

1 1
r+1 3 +10

Clearly, this will be impossible unless x; > 9, which (in turn) requires y > 9.

From this observation the solution is clear:

1, fory < 9, and

A, ), =47
DN =1 yp1 45, fory>9,

0, for y < 9, and

(1,1, 9) y/2—4.5, fory=9.
Evidently, we do not get differentiability (in y, at least) for values where the set
of binding nonnegativity constraints changes. If you fix y = 9 and p; = 1 (say),
and then parametrically vary p,, you will see that the same is true for
diferentiability in prices.

The utility fanction « in this example is continuously dlﬂérentlable of all
orders. It is bounded below and its derivatives are bounded on R . All in all,

this is a very well-behaved utility function. Hence we conclude that looking for
differentiability over changes in the set of nonzero consumption levels may be a
problem.



The result for the CP

With this as prelude, we can state a positive result.
Proposition 11.10 (Differentiability of Marshallian demand). Suppose that

a. u is locally insatiable and twice continuously differentiable;

b. the CP has a unique solution d(p, y) for all (p, y) in an open
neighborhood of some fixed (pO, yo); and

¢ in an open neighborhood of (p°, ), the nonzero components of d(p, y) do
not change.

Let n be the number of nonzero components of dp°, y°), and let j,,

wer Jy be
their indices. Use the notation

il 4 a2
ar; e W= Ox; O

U; =

and let H be the (n + 1) % (n + 1) matrix

0 u

1 sz s ’EI,J;“

Ujy  Ujpg Ugps Uy

‘H o "E,I'_i;z “_;i-,jz Ll',_j:_;;z R ?L_j“_;;:
u_iin u_i'i_i'w u'_iil_i'n A u'_iil'l..:iu

Suppose that

d. H is nonsingular when evaluated at d(po, yo).



Then d(p, y) is continuously differentiable over some open neighborhood of (po,
0

V-
The use of H in the statement of this result is slightly unfortunate, because it
might be confused with the H in Hicksian. This H is for Hessian; more
precisely, H is the bordered Hessian of the (twice-continuously diferentiable)
fanction u (restricted to the nonzero arguments that pertain around d(p°, )°)).!

Before launching into the proof, commentary on the four assumptions is in
order.

e The assumption that u is twice continuously diferentiable is, for most
economists, fairly innocuous. It is also without any serious axiomatic basis.

» Uniqueness of the solution to the CP is far fom innocuous, but we know
that it ©llows if we assume that u is strictly quasi-concave. And there is no
hope for this sort of result without this assumption (at least, for goods that
are consumed; it is okay to have some goods that have no impact on utility
and, therefore, are never consumed).

* The need for an assumption on nonchanging nonzero components of demand
is shown by the simple example. We’ll comment more on this assumption
affer the proof.

+ Condition ¢ in the proposition implies, of course, that y° > 0.

* Assumption d probably seems uninterpretable. Advanced books on this
topic show that this assumption is “very likely” to hold at almost any point
you pick, if u represents strictly convex preferences. But this doesn’t change
its inherent ugliness.

Proof. The proofuses the Implicit-Function Theorem; see Appendix 7.
Fix the point (¢°, 3°). Let x0 denote d(»°, °) and let 2° be the Lagrange
multiplier at the solution to the CP at (pO, yO).

As in the statement of the proposition, suppose that 1% has n nonzero
components. For typographical ease, renumber components so that these n are
the first n components.

Recalling that u,, = /lopm form = 1, ..., n, nonsingularity of the matrix H



implies that 2% > 0; otherwise the first row and the first column of H would
both be identically zero.
Define the function

( p-xr—y
F(p,y, A, z) = { 12(2) = Ap:

| Un(T) — Apn

The domain of definition of F is R",, x R,, x R,, x R",,, and the range is

R'+1. By construction and the preceding paragraph, we know that (po, yo, 29,
x%) is in the domain of definition of F (if we restrict pO and X to their first n
components). By the first-order conditions, we know that

0 .0 0 .0
FUJ"I".H ..,a}'u. il }:D
Now we apply the Implicit-Function Theorem to define implicitly finctions j;l
(p. y) and 3:(p, y) that satisfy

F(p,y, A\(p,v), #(p, 1) =0

in a neighborhood of(po, yO, 29, xo). The Implicit-Function Theorem will apply
ifthe (n + 1) x (n + 1) matrix of partial derivatives of F in the eliminated
variables, evaluated at (po, yo, 9, xo), is nonsingular. The derivative of F' in 4

is the vector

(0, =P =P, .o =P ),



while the derivative of F in x,, is

':j-:"m s Uigmy U2miy o0 oy “‘J':'i"l‘!}_rl

hence we are asking whether

0 —m
M oUp

L

—Pn

T2 e 1
e owiz U o Uz
Pn Uin Up ... Upn

is nonsingular. Nonsingularity of a matrix is unaffected by multiplying any row
and/or any column by a nonzero scalar, so multiply the first row by —4 and the
first column by 4; from the first-order conditions, this gives us the matrix

0 1 1 S | S
M Un  Un i

H = Uy Up Up Bea | .
bp Ulp  Uzg Uppn

evaluated at x°. (To see that this is H, recall that we renumbered our commodity
indices.) But our final assumption is precisely that this matrix is nonsingular.

That is, our final assumption was craffed so that at this step, we can invoke the
Implicit-Function Theorem.



Therefore, we know that for an open neighborhood N of @ ) and an
open neighborhood N, of (io, xo), there are unique solutions in N, of the

implicit equation

F,y. \p. u), £, 1)) =0,

and that the functions i(p, y) and _I.(p y) so created are continuously

diferentiable over N,. Ifnecessary, shrink N| so that for all (p, y) € N, j.(p ¥)

has the same nonzero components as x".

The last step is to note that I.(p y) is Marshallian demand (and i(p’ )

gives the budget-constraint multiplier as a function of (p, y)): We know that d(p,
y) and A(p, y) (the true budget-constraint multiplier finction) are continuous in
(p, ») (the former by Proposition 3.3 and the latter by Proposition 11.1 and
Corollary 11.2); hence for some open neighborhood N'| of (po, yo), they must
lie within N,. The first-order conditions are necessary for solutions to the CP,
and (since all this is in a region where the indices of commodities that are
consumed in positive amounts are unchanging), the first-order conditions are
just F (p, » A(p, »), d(p, »)) = 0. Since i(p, ) and j.(p y) are the unique
solutions of this equation within N,, it must be that j'l(p, »)=Ap, y) and j:(p,
y) =d(p, y), at least for (p, y) € N; NN’'|. But then the continuous
diferentiability of }.(p y) tells us that d(p, y) is continuously differentiable on
Ny NN,

|

How bad is it (ffom a practical standpoint) that we lose difrentiability at
points where nonnegativity constraints go inactive? A line of argument that says
this isn’t (practically) a terrible problem asserts that when we go to apply
demand theory empirically, we will have to aggregate over goods to such an
extent that expenditure on each aggregate commodity is strictly positive. That
is, if we try to fit the consumption behavior of a consumer, we won’t deal with
her demand for bus service, air transport to New York, air transport to Los



Angeles, and so on. Instead, we will create a composite commodity—
transportation services—and try to fit her expenditure behavior at this aggregate
level. The point is, while the individual consumer may spend (at some prices
and income levels) zero on bus services, almost no one will spend nothing on
transportation services. If we aggregate consumption commodities at a high
enough level, the argument goes, we can safely assume that we will never see
consumption on the boundary of Rk

Differentiability of Hicksian demand

What about differentiability of Hicksian demand? Similar techniques work quite
nicely. We assume that the EMP has a unique solution and that the binding
constraints (the index set of the goods consumed in strictly positive amount)
don’t change over some neighborhood. We use the combined first-order,
complementary-slackness conditions for the EMP to determine implicitly the
Hicksian demand function, and then invoke the Implicit-Function Theorem.
With this rather substantial hint, I leave the details to those of you fanatical
enough to pursue it.

11.5. Integrability

The discussion two paragraphs ago, about applying demand theory empirically,
probably struck you as coming out of leff field. What is the relevance to this
discussion of empirical applications of this theory? To answer this question,
recall first why we are at all concerned with differentiability of the Marshallian
demand function: We need it to derive the Slutsky Equation. (Given
diferentiability of Marshallian demand and Hicksian demand, our derivation of
the Slutsky Equation is perfectly rigorous.) But why do we care about the
Slutsky Equation?

*  The Slutsky Equation, as we’ve already seen, gives us an intuitive
decomposition of d/dp; into relative-price and real-income pieces.

* As we shall see later in this section, economic notions of things like
substitute and complementary goods are informed by the equation.

» The Slutsky Equation is central to the question of integrability.



And, to link two paragraphs ago to this section, the question of integrability has
its roots in empirical applications of demand theory. In applied (econometric)
work, it is offen useful to have parametric functional specifications for a
consumer’s demand function. We can write down nice closed-form
parametrizations for the utility function u, and then solve the CP to derive
Marshallian demand. But for most analytically tractable specifications of u, the
Marshallian demand function that results is a mess. It is offen more convenient
to specify a parametric form for Marshallian demand directly, being sure that this
parametrization is analytically tractable. But then, to be sure that one’s
parametrization plays by the rules of microeconomic theory, one would want to
know whether there is some (parameterized) utility function that gives the
parametric family of Marshallian demand that is being used.

Integrability provides the answer. Given a specification of an alleged demand
function—in the form of a function y(p, ») (possibly with some free parameters to
be estimated)—integrability gives sufficient conditions for y(p, y) to be d(p, »)
for some well-behaved utility function u. To develop those conditions (and see
to what extent they are necessary as well as sufficient), we begin with some
definitions.

Definition 11.11.

a Iff: RF = R is twice continuously differentiable, the k x k matrix of its
second partial derivatives—that is, the k % k matrix whose ij th element is
0*f/0z; 0z—is called the Hessian matrix of f.

b. Ak x k matrix M is negative semi-definite if xMx <0 for all x € RF.

Mathematical facts: Suppose f is a twice-continuously-differentiable function
from (some open domain in) Rfto R

a. The Hessian matrix of f is symmetric.

b. The function f is concave if and only if its Hessian matrix is negative

semi-definite (evaluated at all points in the domain).

I do not attempt to prove fact b, but you should note that fact a simply states
that 6%f/0z,0z; = &*fézjoz;.



Proposition 11.12. Suppose, for a consumer with continuous and locally
insatiable utility function u, e is the consumers$ expenditure function and v the
indirect utility function. Suppose that for some open neighborhood of
parameters, the solutions to the CP and the EMP are unique, and the
corresponding Marshallian demand function d and Hicksian demand function h
are both continuously differentiable. Then the k % k matrix whose ij th term is

dd; E_t]dj-

dp; fti)_y

is symmetric and negative semi-definite.

(11.8)

Proof. Since h is the gradient ofe, and & is assumed to be continuously
diferentiable, e is twice continuously differentiable. We know that e is concave
in prices, so its Hessian matrix must be symmetric and negative semi-definite.
But as & gives the gradient ofe, the ij th term in the Hessian matrix ofe is just
ah/ap,., and the Slutsky Equation tells us that this is identical to term in (11.8)

! |

Because of its importance to demand theory, the Axk matrix whose ij th
element is given by (11.8) has a name: It is called the Slutsky Matrix.

Suppose someone hands you a diferentiable function y : Rk xR, — R"‘+
and asserts that this function is Marshallian demand for some consumer with

locally insatiable preferences. We now have a number of tests that this function
must pass:

a. For eachp andy p - y(p, ) must equal y. Henceforth, we refer to this
condition (that the consumer spends her entire income) as Walras’ Law.

b. The function y must be homogeneous of degree 0.
c. The Slutsky Matrix (with y in place of d) must be symmetric and negative

semi-definite.

The Integrability Theorem says that, with some technical conditions on the
function y, these conditions are sufficient as well. That is, ify satisfies a, b, and



¢, and some technical conditions, it is the Marshallian demand function
corresponding to a locally insatiable utility maximizer, whose preferences
(moreover) are nondecreasing and convex.

I’m not going to try to prove this result, or even give an exact statement of
it, because to do justice to it would require too much background on the theory
of diferential equations. Instead, I describe how integrability works, and then
recommend further readings if you want to see the details.

Suppose y(p, y) is indeed a Marshallian demand function. We know then

that u(x(p, ¥)) = Wp, ¥). Fix some price p° and income level }°, and for all prices
p, define

ol G o .0
wp; p,y) =elp,v(p, u))-
In words, u gives the amount of money needed at prices p to get the level of
utility obtained at p° and 3°. This is called (by Hurwicz and Uzawa, in the
classic paper on integrability) the income compensation function. Now fix p at,
say, jj’ and think of varying p® and )°. In particular, define a function 7(p°, »°)

by

n@”, o) = pd; 0°, ) = e@, v @", "))
Because e is strictly increasing in its second argument,
1", 4" = n(p', v if and only if v(p®, y%) = vty
Hence if X" = y(p°, 1) and x' = 4(p', y"), we know that
u@) =" Y > v ) = uih) if and only if 104" = n@' ).
In other words, if we define, for x in the range of,

Ulx) :=n(p, 1), for p,y such that x(p, y) = x.



we know that U is a representation ofthe consumer’s preferences (on the range of
%)

But how do we find #(p, »)? Go back to the equation u(p; p°, »°) = e(p,
V(po, yo))A Take the partial derivative of this in p;:

"y’ e’ i) 0.0
= = |F & L,
7 o, (V)

=u[p.a(p“.rf(p“. y“) oy p ) ), foreach i,

The first and last terms in this progression (fori = 1, ...,k simultaneously)
constitute a total differential equation for the fanction x(-; pO, yo), ifyou have the
fanction y. (Note that x(p%; p°, %) = e(p®, wp?, 1)) =17, which gives an initial
condition for each p0 and yO.) Assuming you can solve (that is, integrate) this

diferential equation, you can construct the family of functions u(-; pO, yo)‘ Invert
these fiunctions as above to construct #, and you have a utility finction.
Ifthis seems magical, think first about the differential equation

Apu(p; 1°. ")
p;

= x:(p, p(o; 2" 7).

The function u tells you the amount of money needed to keep the consumer at
the utility level v(p®, )°), at prices p. The lefi-hand side of the differential
equation asks: How much (more) money is needed, at the price vector p, if the
price of good i increases by one unit? And the right-hand side says: It is the
amount of money that is needed so that the consumer can continue to buy the
bundle that she would buy at p, with enough money to get utility level v(po,
30). If she is buying none of good i, she needs no more money. If she is buying
a positive amount of good i, then buying back her bundle is, to a first-order
approximation, the optimal thing for her to do. This is just like the intuition
we gave for the Slutsky Equation at the start of the chapter.



The other part of the argument is the realization that, if we fix the first
argument in g, it gives a utility function for the consumer. But that’s not really
magical either: If one bundle is chosen at p°, 30 and another at p', y!, and if at
prices ﬁ it takes more money to get the utility that the first bundle provides

than to get the utility that the second bundle provides, then (of course) the first
bundle has greater utility.

Of course, almost all of the heavy liffing remains to be done. Do the
diferential equations have a solution? Does the solution for different initial
conditions behave nicely? Given the function #, does it really provide us with a
utility function that gives back the demand functions y? Assuming that we want
utility functions that are locally insatiable and continuous, does the 7 that is
constructed satisfy these conditions? And this only suggests how n can be
defined for x in the range of ).C‘; We want a (continuous and locally insatiable)
utility fanction for all of . How is  extended? If you are interested in

details, I recommend both Border (2004) and Jackson (1986b).

11.6. Complements and Substitutes

The symmetry of the Slutsky Matrix bears some scrutiny. Putting this in terms
of Hicksian demand, we know that

i.”?é, _ L"']h_;;
dp; — Op;

So the income-compensated demand for good i is increasing in pj ifand only i
the income-compensated demand for good; is increasing inp, and the
magnitudes of the derivatives of each are identical.

The fact that the partial derivatives are identical and not just similarly
signed is quite amazing. Why is it that whenever a $0.01 rise in the price of
good i means a fall in (compensated) demand for; of, say, 4.3 units, then a
$0.01 rise in the price of good j means a fall in (compensated) demand for i by
approximately 4.3 units?”> While 1 am unable to give a good intuitive
explanation, at least the similar sign characteristic makes intuitive sense. If a



rise in the price of good i causes demand for good ; to rise, then in some sense j
is substituting for i (the demand for which is reduced because of the rise in
price). But then if; substitutes for 7, / must substitute forj. And conversely, if i
complements j, so a rise in the price of; lowers demand for i, the same effect
must hold with 7 and j reversed.

Note that all this concerns Hicksian demand. For Marshallian demand,
things are a bit more complex because there are income effects to worry about;
we can’t say that ad/apj = ”d/@pl—, or even that they necessarily have the same
sign.

In informal economics, the term substitutes is used to describe pairs of
goods where an increase in the price of one good causes an increase in the
demand of the second, and complements is used when an increase in the price of
one good causes a decrease in the demand of the other. If we attempt to formalize
this in terms of the signs of 0d/8pi, we run into the unhappy possibility that

6dj/6pi < 0 and, at the same time, 6d,-/6pj > 0. The symmetry of the Hicksian
demand derivatives precludes this unhappy possibility for Hicksian demand. So
it has become common in more formal treatments of substitutes and
complements to base the definition on the sign of@h/@pi = (')h/(?pj. But you
should be careful when you encounter these terms in the literature, as different
authors will use them somewhat differently.

11.7. Integrability and Revealed Preference

The question of integrability is, Does an alleged system of demand functions
(for a single consumer), y : Rk X R, — Rk+, arise ffom utility maximization

for some (suitably regular) utility function? Up to some regularity conditions,
the answer supplied by the Integrability Theorem is, Assuming differentiability,
it does so ifand only ify is homogeneous of degree 0, satisfies Walras’ Law (p -
%, ¥) =), and has a symmetric and negative semi-definite Slutsky Matrix.
Back in Chapter 4, Afiiat’s Theorem addressed a seemingly similar
question, Does a finite collection of demand data (fom a single consumer), {(x’,
Pl )i =1, .. n}, wherex is demand atp’ and ), arise fom utility
maximization according to a locally insatiable utility function? The answer
given there was, It does if and only if there are no revealed preference cycles



within the finite set of data, where at least one of the revealed preferences in the
cycle is revealed strict preference.

To have a seamless theory, it would be nice to connect these two very
diferent approaches to the same basic question. And in one direction, at least,
the connection is very easy:

Corollary 11.13. For an alleged system of demand functions y : Rk X R,

— R"‘Jr to be generated by a utility-maximizing consumer with locally

insatiable, continuous utility, it is necessary that, for every finite collection of
price-income pairs {(p', y); i = 1 ..., I}, the corresponding demands {y(', y/)}
together with those prices and income levels satisfy GARP.

I label this a corollary, because it follows immediately from Affiat’s Theorem
and, for that matter, fom the easy half of Afriat’s Theorem.

But then one wonders: Suppose y satisfies GARP for every finite collection
of price-income pairs and the corresponding levels of demand. Is this sufficient
to know that there is some underlying continuous and locally insatiable utility
function that generates these demands? Please note: this is more of theoretical
than practical interest, because checking that there are no violations of GARP for
every finite collection of price-income pairs and the corresponding demands is
utterly impractical. Compare this task with checking (presumably, algebraically)
that y is homogeneous of degree 0, satisfies Walras’ Law, and has a negative
semi-definite and symmetric Slutsky Matrix; the latter is something one could
contemplate doing, given an algebraic specification of y. But even if impractical,
the question is oftheoretical interest, since it unifies the two approaches.

Indeed, this is close to a fandamental—perhaps the fundamental—question
in the historical development of the theory of the consumer. Why “close to”?
GARP is based on the underlying maintained hypothesis that preferences must
be locally insatiable. The historical developments referred to rely instead on an
underlying maintained hypothesis that preferences give a unique solution to the
CP for each p and y. Hence some constructions from Chapter 4 are modified:

If x is demanded at prices p with income y, say that x is directly
revealed as strictly preferred to x', written x ::-d X, ifp-x'<yandx'

#x



The questions to be answered are: How do WARP and SARP connect with the
existence of a utility-maximizing consumer (with preferences that generate
unique solutions to the CP)? How do they connection with the conditions in

The (alleged) demand function y satisfies the Weak Axiom of
Revealed Preference (WARP) if p - x(p’, V') <y and x(p', V) #xp, »)
implies p' - y(p, ) > y" (Restating this: ifp - y(p’, »") <y, then y(p’ »")
is affordable when prices are p and y. If in addition x(p, ) #x(p’ »),
then y(p’, »") is not chosen at p and y, and so must be strictly worse
than y(p, y) or, x(p, ») _‘p—d x(@', V), and so y(p, y) must not be affordable
at p'and ), orp’ - y(p, ¥) > »" Or we can restate this as, if y(p, ) _‘p—d

1", ¥, then it cannot be that x(p", ) =< x(p, ).)

The (alleged) demand function y satisfies the Strong Axiom of
Revealed Preference (SARP) if for every finite collection of price-

income pairs {(p', y); i = 1, ..., I}, such that yp™', /") :::—d 20 V)

for i = 1,.., I — 1,it is not true that xp', y") _‘_a—d 20 .

(Obviously, WARP is a special case of SARP.)

the Integrability Theorem?

At the risk (indeed, 1 fear, the certainty) of angering colleagues who are
scandalized by its omission, I will not run these questions all the way down to
definitive answers; the best results require some mathematical methods that
outbid what I expect of readers of this book. But it is worthwhile to mention

some of'the easier bits ofthe theory:

Walras” Law is not implied by SARP: Imagine strictly convex preferences
with a global satiation point x5 for any p and y such thatp - X< A
demand will be x* and Walras’ Law will fil. But if preferences are strictly
convex, solutions to the CP are unique for all p and y, and (obviously)
SARP holds. We can fix this by weakening the definition of }—d to read: If
x is demanded at p and y and either p - x' <y and x'#x or p - x' < y, then x
_‘,a—dx'. Or we can simply add Walras’ Law as a basic assumption about the

demand function y.

Iffor some 1 > 0, p, and y, we find that y(p, y) # x(Ap, Ay)y—that is, ify fails



to be homogeneous of degree 0—then SARP is violated: Since p - x(p, y) <
¥, p - x(p, ¥) <Ay, so under the hypothesis that y(p, y) # x(ip, 1), x0.p, 1))
ﬁ_d)((p, »). By a similar argument, y(p, ») ::-d x(p, Ay). This gives a'—
cycle.

« If diferentiable y satisfies Walras’ Law and is homogeneous of degree 0,
then satisfaction of WARP implies that the Slutsky Matrix for x is negative
semi-definite (at least, away ffom any boundaries). The argument, which I'1l
give a bit informally, has two steps. Throughout, we assume that y satisfies
Walras® Law, is homogeneous of degree 0 and differentiable, and satisfies
WARP.

First, fix any p and y, and let x = y(p, y). Take any other price vector p’, and
let y'=p’-xand x'= y(p' - ). Then

®-p-@

!

—p)=p.-2—p.-2' —p'.2+p .2

y—p-e'—p ety
y—p-x'—p-x+p -z

y—p-x <0,

with a strict inequality at the end ifx #x' The first step is algebra, the
second uses Walras’ Law, the third uses the definition of y’, and the final
equality is just the cancellation of identical terms. As for y <p - x’' with a
strict inequality ifx # x', that is WARP: x’ is demanded at p’ and y" while x
is affordable there (by construction), so x _‘_1_‘1 x. But then x’, if it is not x,
cannot be affordable at p and y.

Now again fix p and y, and let x = y(p, y). Make a small change in prices, to
p'=ptdp,andlety’ =p-x=@+dp) x=y+dp - x Letx'=yp +dp,
y +dy). We know from the first step that dp - dx < 0, where dx = x" — x.
But, using Taylor’s Theorem,



Hence 0 >dp-dx = dp-S-dp, where S is the Slutsky Matrix for y. Since dp
could have been taken in any direction, this shows that S is negative semi-
definite.

That is the extent of the low-lying fluit on this topic. For the sake of
completeness, let me give (but not prove) one result that connects SARP and
the existence ofa utility-maximizing consumer: Suppose that every bundle x €

Rk is demanded for some price-income pair; that is, {x € R X =xp y)

for some p and y} = Rk Suppose that y satisfies Walras’ Law and SARP

Then x represents the utility-maximizing choices of a consumer, for some utility
function. This result is the corollary given by Richter (1966, p.641). For
readers whose training in set theory is strong, I strongly recommend this article.

Bibliographic Notes

Roy’s Identity is (first?) reported in Roy (1947). The earliest appearance of the
Slutsky Equation that I have personally seen is in Samuelson’s classic
Foundations of Economic Analysis (1947); Samuelson in turn attributes this to
Slutsky (1915).%

As was the case last chapter, the material concerning the connections
between utility functions and indirect utility functions comes from Krishna and
Sonnenschein (1990) and Jackson (1986a).

The classic reference on integrability is Hurwicz and Uzawa (1971). I repeat
my recommendations of Border (2004) and Jackson (1986b) for further
discussion and detailed proofs.



I mentioned Richter (1966) as a good reference for chasing down revealed-
preference approaches to the question Is this alleged demand function really a
demand function (does it arise from a utility-maximizing consumer)?, as well
as for related questions. The two classic references on the topic are Samuelson
(1947) and Houthakker (1950).

Problems

m *11.1. Suppose that k = 3 and U(x|, x,, x3) = In(x;)+3In(x,) + In(x; + 10).
Suppose that p; = 1, p, = 2, and p; = 3. At these prices, what is Marshallian
demand as a function ofy alone? What is the multiplier as a fanction ofy?

Verify mechanically Corollary 11.2 for these prices. (That is, compute v, take its
derivative in y, and compare with your earlier answer.)

m 11.2. Proposition 11.1 (diffrentiability of the indirect utility finction) leaves
a fow holes. Perhaps the most important is that we didn’t give a result for
differentiability ofv at (°, %) such that }° = 0. Please supply such a result
(assume the CP has unique solutions in a relatively open neighborhood of (po,
yO), where y0 = 0). Then, show by example that, ifu is not diferentiable, v may
not be differentiable in either p ory. (Hint: Work with £ = 1.) Finally, we
proved last chapter that the expenditure function is differentiable in p, for fixed v.
Can you provide a result about differentiability in (p, v) jointly?

m 11.3. Suppose that v is continuously diffrentiable in p and y, and that 6v/0y
> 0 everywhere. (Assume that u is locally insatiable.) Prove directly that this
implies that the expenditure function is continuously diferentiable in p, using
the Implicit-Function Theorem.

m *11.4. Prove Proposition 11.9.

m 11.5. You may think that Propositions 11.4 and 11.9 establish a one-to-one
connection between a class of utility functions and a corresponding class of
indirect utility functions, in the spirit of Proposition 10.17. But this is not true.
I have omitted one or more important pieces ofa full proof (The propositions as
stated are correct; I haven’t lied to you. But the propositions miss one or more



pieces of the puzzle. I did this intentionally so that, with this problem, I could
force you to dig deeply into what the propositions say.) One thing that doesn’t
quite line up concerns the range of utility functions. But that is no more than a
minor annoyance, easily repaired. Something else is missing. What is it? And
can you fill in the missing piece of proof?

m *11.6. Give and prove a result concerning differentiability of Hicksian
demand. To do this, you must first explore the solution of the EMP using
calculus, so there is a lot to do here.

m !1.7. A particular consumer has Marshallian demand for two commodities
given as follows

2y

d mipLp.y)=—.
and z2(p1.p2.y) -

il m.y) = ————
1, . y) T

This is valid for all price and income levels that are strictly positive. This
consumer assures me, by the way, that at prices (p;, p,) and incomey, his

Marshallian demand is strictly better for him than anything else he can afford.

Does this consumer conform to the model of the consumer we have created?
That is, is there some set of preferences, given by a utility function, such that
maximization of that utility subject to the budget constraint gives rise to this
demand function?

If the answer to the first part of the question is yes, how much about the
consumer’s utility function and/or preferences can you tell me?

T 1

! The Hessian matrix ofu (restricted to its nonzero components) is not H,
but the n X n submatrix in the lower righthand part of H. See Definition 11.11
next section. The adjective bordered refers to the first row and column of H.



2 « Approximately” is inserted here because this is a discrete change in price.
The derivatives are precisely equal.

31f any reader can improve/correct this attempt at attribution, I’d be grateful.



Chapter Twelve




Producer and Consumer Surplus

Most courses in microeconomics at some point engage in policy evaluation:
What happens if the government taxes or subsidizes the sale of some good?
‘What happens if a price ceiling or a price floor is established? What if imports
into a particular domestic market are capped at some level?

The discussion of “what happens?” can begin and end with an analysis of
changes in prices and quantities. But when it comes to evaluation, one typically
seeks dollar-denominated measures of the impact such policies have on firms
inside the industry and on consumers of the specific product. The concepts of
producer and consumer surplus appear at this point; the former is advanced as a
dollar-denominated measure of the impact the policy has on producers; the latter
is asserted to be a dollar-denominated measure of its impact on consumers.
These concepts are defined graphically, by pictures such as Figures 12.1a and b.
In this chapter, we explore the foundations of these two concepts.

price price
supply

quantity 1 quantity

(a) Producer sumlus (b) Consumer surplus

I v e e e

Figure 12.1. Producer and consumer surplus. Intermediate-level textbooks
in microeconomics offen have the pictures shown here, accompanied by



text such as “The shaded region in panel a is producer surplus, a dollar-
denominated measure of the value producers obtain flom this market. The
shaded region in panel b is consumer surplus, a dollar-denominated
measure of the value obtained by consumers.” The objective of this
chapter is to make these notions as precise as we can.

12.1. Producer Surplus

Producer surplus has a relatively simple story, although one with a hidden trap.
The story concerns the market for a particular good supplied by a number F of
firms. We assume that the firms are all competitive, engaged in profit
maximization in the sense and style of Chapter 9; Z will denote the production-
possibility set of firm /. We let p € Rk be the vector of all prices, and we

will suppose that coordinate indices have been chosen so that i = 1 is the index
ofthe good that interests us.
Throughout this discussion, the ©llowing assumption is maintained.

Assumption 12.1. For each firm f, Z is closed, nonempty, and satisfies the
recession-cone property of Chapter 9.

Upward-sloping supply
The first step is to construct a supply ““curve” for this good. Fixing the prices of
all other goods at (-, p,, p3, -...p;), we ask how much output will the firms in

the industry produce as a function of the price p; of the one output good. Let 7
*(p1) be the set of optimal netput vectors for firm f if the price of good 1 is p;
and the price of all other goods is given by (-, p,, p3, ....p;). (I should indicate
the dependence onf*(pl) on those fixed other prices, but do not do so to keep
the notation tidy. All prices except for p; are firmly fixed throughout the

discussion of this section, unless and until I say otherwise.) And let Z " denote
the “ full-industry optimal-netput set,” or

D)={re B n=rt s 407 whereof € Z8pY) foreach f=1,... F).



The individual-firm-f supply correspondence, i , is the
Sfirm:f supply pondence, = Zi ()
projection along the first coordinate of Z/* as p; varies—that is, z; € Ef"‘

(py) ifthere is some z € Zf*(p]) whose first coordinate is z,—with the industry-
wide supply correspondence, p, = Z *1(17]) defined similarly.

In undergraduate-level textbooks on microeconomics, one finds supply
functions, not supply correspondences. And the supply functions are always
upward sloping. We’ll keep the generality of correspondences: At some levels of
py» individual firms (and hence the industry) may have several levels of output
that are each part of (distinct) profit-maximizing netput vectors. But Corollary
9.13 ensures that supply, at both the individual-firm and the industry levels, is
“upward sloping.”

Proposition 12.2. Suppose that ﬁ‘_ = _.I-r‘_';-,_l : If.' i‘f e Zf"‘ {f-'-' }and
z"f' (p } for ﬁrm f then
:?ilf >3 If 3 € Z1(P1) and % € Z7(Dy), then Z = 7.

Proof. The first part of this proposition simply restates Corollary 9.13: For a
competitive, profit-maximizing firm, a rise in the price of good i with no change
in any other price never leads to a “fall” in the level of good i. The scare quotes
are there for the case where good i is an input: Then the corollary tells us that
the profit-maxizing level of good i does not decrease, which is to say becomes
no more negative, which is to say that the amount of the input used, measured
as a positive quantity, does not increase. But in the current context, we’re
speaking of an output, and in that context the scare quotes are unnecessary: Ifthe
price of output good i rises, the level of output of goodi (in any profit-
maximizing plans for the two price vectors) does not fall.
The second part of the proposition follows very easily. Suppose

:?]_ = Zr-f Eﬁj} and Zl:]_ = Ef U‘j]_:] Then

:?1 - E;-I- i1 I— f‘{"_‘, where  each ‘?if e Eif" {ﬁ'l:' and



;-:"- = ;f%+__ '+E{:‘.r where  each ;:;f = Efﬁ(ﬁlj Then,

because :Qif - :l’-if for each f by the first part ofzhe proposition (by Corollary

9.13), the same is true of the respective sums.
|

It may be gilding the lily, but I want to reinforce the message of Proposition
12.2 with a picture. This picture shows what can (and cannot) happen in either
Eif " (] or z‘l‘ I::I - Please recall that the variable p, the price of the

good in question, is on the vertical axis, so you may want to tilt your head to
the side as you look at this.

price g pice
g
4 b g >
0
0
/J :
1/ 2 GR)
I
supply amount of input good supply

t] ) )

Figure 12.2. The geometry of supply. Panel a shows a supply
cotrespondence and panel b the “northeast” fontier of the corresponding
production-possibility set. Supply increases continuously if the frontier of
Z is strictly concave, as in the regions marked by 1. Supply is is
multivalued and “filled in” where the frontier of Z is flat; see the regions



marked by 2. Where there are kinks in the frontier of Z, supply can be
constant for a range of prices, and supply can by multivalued and discrete
where the ffontier ““caves in”; points 3 and 4 mark kinks in the frontier of
Z, while the region between them is a “cave in” or nonconvexity in Z.
(For you to know that there is a kink at 3, you must convexify Z by
drawing the line segment ffom 3 to 4 and see that the kink remains in the
frontier of the convex hull.) Finally, panel ¢ shows what cannot happen—
there cannot be prices ﬁl > f 3 Where the largest supply of output at f M

exceeds the smallest supply of output at ﬁl

The legend of Figure 12.2 explains what is going on, but to reiterate: Panels
a and b depict four possible shapes for a supply cormrespondence and the
corresponding shapes of the underlying production-possibility set Z.! Where Z
is strictly convex along its frontier, supply is singleton valued and rising; see
the areas labeled 1 in the two panels. Where Z is flat, supply is multivalued
and, moreover, all supply levels over an interval are in the supply
correspondence; see the segments marked 2. Supply is constant over a range of
prices where the set Z is kinked; see the point 3 on Z (in panel b) and the
corresponding flat region 3 of supply in panel a. (Because the independent
variable in panel a is price, “flat” means vertical. Also, the kink at point 3 in
panel b is really only a kink in this sense ifit remains a kink when we look at
the convex hull ofZ. In the figure, this happens.) Finally, the supply
correspondence at the price for good 1 that spans the nonconvexity of Z between
points 3 and 4 is multivalued, consisting of the two endpoints of the interval
(only). In general, this happens whenever there are nonconvexities in the frontier
of Z, even without the kinks.

We see, therefore, a fairly rich set of possibilities for supply correpondences.
But what we can never see is the picture in panel c. The proposition tells us
that while supply can be multivalued, the supply offered at two different prices
ﬁ] and j-'_’;.] can overlap at one level at most; ifﬁ1 > i;], then the largest

supply at f 3 can at most equal the smallest supply at jjl; no other overlap is

possible. And, moreover, if this happens, that common value is the only
possible supply level at prices between j-'_’;.l and ﬁl



Supply and the profit function

Recall Proposition 9.22. The profit fanction ' for firm [ is differentiable at the
price vector po if and only if the firm’s profit-maximization problem has a
unique solution atpo, in which case that unique solution is the gradient
(derivative) of 7. In this chapter, our concern is not with the full fanction 7,
because we are fixing all prices except for the price of the output good, indexed
by i = 1. In this context, we have the ollowing result:

Proposition 12.3. Fix prices for all goods except the first at levels p,, ps,

....py and, for a given firm f, consider the function

— wfip

o — (P, Prs-- -, PR)-

This function (of one variable) is differentiable at the price level EJE if E]-_f *

(py) is singleton at pol, in which case the derivative is the unique z, € Z]-.f "‘
0

( 1”‘1)‘

We are only giving a one-directional implication (uniqueness of the output level
of the firm implies differentiability in the price of the output) because, for our
purposes, that is all we need. But if you want to be fastidious, you might want
to answer the question, If7 is diférentiable in P, at the level EJE’ does this

imply that Zif" (pg) is singleton? (Answer: Yes. So the task for the
fastidious is to give the argument that shows this.)

Proof. The proof essentially mimics the proof provided for Proposition 9.22.
Suppose z]-.f"‘ (pg) is singleton, with z; its single member. We must show

that
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for every sequence of strictly positive prices for good 1, {pi‘}, that has limit

=0,

p? and such that pii' * li._]g for all n. We show this by the usual argument
that, along every such sequence {pii'}, we have zero as a limit of the displayed
fraction along some subsequence.

Fix a sequence {pi‘} (with pi‘ * p% for all n). Use p" as shorthand for (
pi‘, Py - Py) (including forn = 0). Let z” be any point selected out of

7z (p™). Since lim = po and the recession-cone property holds, we know
that the z” live in a compact set; looking along a subsequence, we can assume

that lim 7" exists and equals some z°. Of course, by Berge’s Theorem, 20

n—o0

e Zf*(po), and so ::'ID =z

n
oo P

Because 2" is a profit maximizer for p" and 2 is a profit maximizer for p°,

0 J - 0 n

2" and p?.20>p". 2m.

pn ] :.n 3 ?jn
Therefore,

. i f
P e _pﬂll:r. >p n _pfll::.ﬂ :,Tf{pn)—ﬂ" (pﬂ) Epn -:Eﬂ—pu-:‘.s.

But since all prices in each p” are the same as the prices in po except for the
first, the first and last terms in this string of inequalities simplify, and we get

@ =D 2wl @™ - 7' @) = @F — P

Subtract (p 1?]1 o0 = (p fjg)zl from each term and then divide by |

Ti.:‘



pi‘ - EJE\ to get
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The first term goes to zero as n goes to infinity, because (p p_l)/\p pg

= 0.

| is bounded by 1, while llmn( no_ =':|) = 0 by construction. Therefore, the

second term has limit zero as well.
|

So, given the supply correspondence of a firm, what does its profit function
(as a function of the output price alone, fixing all other prices) look like? The
profit function is convex (we didn’t need Proposition 12.3 to know that), and it
is diferentiable at any price where the supply correspondence of the firm is
singleton. Since the supply correspondence is nondecreasing (in the strong sense
of Proposition 12.2), the points of nondifferentiability of 7 are at most countable
in number. (Wherever the supply correspondence is more than singleton, supply
must span an interval of strictly positive length. The interiors of these intervals
cannot overlap, and each contains a rational value. But there are only countably
many rationals.) And except for those (at most) countable number of prices, the
(single) level of supply at any price is the derivative of the profit finction. The
Fundamental Theorem of Calculus tells us the ©llowing:

Corollary 12.4. Fix a firm f and prices for all goods except the first at levels
Pys -Py For any two prices for the first good, p' and p"},

@l oy o) — T @ Dy Be) = ) 23 (py) dp,

Py

where 7 F# is the supply of good 1 by firm f for prices p, such that the
1 1 1



supply correspondence is singleton, and where it doesn't matter what you take
for the integrand at prices where supply isnt singleton, because there are at
most a countable number of those.

Because 7 can be nondifferentiable at countably many points (which could, in
principle, be dense in any interval), this is not the plain-vanilla Fundamental
Theorem of Calculus. But it is still true. The function 7z is convex; hence is it
absolutely continuous. And absolutely continuous functions are the integrals of

their (existing-almost-everywhere) derivatives. For details, see Royden (1968).2

Producer surplus

And except for some warnings to be supplied momentarily, that’s all there is to
producer surplus. Let me abuse notation and write ;:'1" (py) for the “industry

supply function” of our good. The scare quotes around industry supply function
are there because, at some prices, one or more firms might be willing to supply
multiple quantities; at those prices, #¥(p;) is not well defined. But there are at

most a countable number of such prices (finitely many firms, and a countable
number of such prices for each firm), and I'll worry about them in a bit.
Producer surplus, per most textbooks, is the area “under” the industry supply
curve, where the scare quotes around under signify that economists typically
graph supply with the independent variable price on the vertical axis, so under
here really means, fo the left of. The starting and ending points for this “area
under the curve” also aren’t so clear, but when it comes to application,
economists are primarily concerned with changes in producer surplus. So let me
give the following as a formal definition:

Definition 12.5. Fixing all prices except for the price p| of some specific good,
the supply “function” of which is given by ;:'_l"(pl), the change in producer
surplus when the price of the good shifts from E‘]E to pi’-‘- is



H

Py
o ¥
21 (p1)dpy.
PO
The superscripts n and o are mnemonics for new and old. Of course, in this
integral, ifprice j'-"'.lo exceeds that of pi‘, you should understand this integral as

being the negative of the integral with the upper limit being the higher price.
What about values of p; for which ;:'1‘ (py) is not well defined? Since there are at

most a countable number of such values, they don’t affect the integral. And we
have:

Corollary 12.6. The change in producer surplus is the sum of the changes in
the profits of the firms that supply this good, resulting from the change in
prices.

Proof. Letf=1, ..., F enflumerate the firms that mal}_e up this industry, so that
3 * —_— -y W i -y " 1 i

- U}lj — E_f 23 (]Ul].- T\“'ﬂ.‘lElE e {plj is the unique
supply by firm f at price p;, for all points p; where Zif" is singleton. (We
o

don’t worry about ;:1
E if ¥, as they don’t afect the value of the integral.) Therefore, the change in

at prices where one or more firms have nonsingleton

producer surplus when price changes from f-"? to pii- is

i i F j Foroml ;

2 (p)dpy = 5 1= 2 () dp |,
Codp= | Y| dm=d ) | o Godp
B Bt f=1 BUR

and by Corollary 12.4, the terms being summed on the right-hand side are just

the changes in the profits of the firms, firm by firm. -



Warning

The warning I’ve been threatening to give can now be given. In many
applications of the concept of producer surplus, the “industry supply curve” is
estimated empirically. You must be careful about this. Imagine an industry
filled with small, price-taking firms. In particular, imagine that one of the inputs
to the production process used by the firms in this industry is supplied by
another industry, and the supply of that input is upward sloping. To be clear,
no one firm in this industry buys enough of this input to affect its price
materially, and so all firms in the industry have competitive conjectures about
its price: They believe that they can buy as much as they want at whatever is
the prevailing price, and they choose their production plans to be profit
maximizing, based on that belief But on an industry basis, this industry buys
enough of this factor of production so that if the level of output in this industry
changes, demand for the factor input will increase enough to drive up its price.
To compute the change in producer surplus, you are supposed to compute
the area “under” the supply curve ffom the old to the new price of the output
good. But in the situation I’ve described, there are two candidates for the
industry supply curves. One, which might be called the empirical supply curve,
takes into account the fact that, as the level of industry output rises, the price of
the factor rises. The second, which can be called the notional supply curve, is
just the sum of supplies by the individual firms, under the assumption that the
price of this factor of production isn’t going to change. It isn’t hard to construct
simple models of this situation where (as you might expect), the empirical
supply curve responds less robustly to changes in the price of the output good
than does the notional supply curve. They will certainly give different values for
the change in producer surplus, as output prices change. If you go to the data, it
is the empirical supply curve you will see. But in terms of the theory of
producer surplus, if we are trying to measure the change in profits of firms in the
industry as the result of changes in the price of the output good, it is the
notional supply curve that gives the right answer. The key to producer surplus
is Proposition 9.22 and its variants given here. This says “all other prices
fixed.” That’s not what you get when you look at the empirical supply curve.

12.2. Consumer Surplus
While the story of producer surplus is nice, neat, and (relatively) simple,



consumer surplus is trickier In both cases, we are looking for a dollar-
denominated measure of how firms supplying the good and consumers buying
the good are affected by changes in the price of the good. For the profit-
maximizing firms of this book, it is natural to measure this impact by the
changes in their profit levels, which is what producer surplus does. But the
welfare of consumers is measured in the first instance in utility. Unless there is a
natural transformation from utility to dollars (which would happen, say, if
utility were quasi-linear in money-leff-over), it isn’t clear how to proceed. That
makes consumer surplus harder to pin down.

The compensating and equivalent variations

1 will restrict attention in this discussion to the welfare impact on consumers of
a change in the price they face for a given good, assuming they can (after the
change in price) rearrange their consumption however they want, subject to their
budget constraint, and assuming that the prices ofall other goods stay the same.
As with producer surplus, the good in question will be assumed to have index
1, its price will be denoted p;, and the prices of all other goods will be fixed at

P2, .-, D In parallel to Assumption 12.1, for the remainder of this section, I

make the fllowing assumption about all consumers.

Assumption 12.7. Every consumer has continuous and locally insatiable
utility.

The question then is, What is the impact on a given consumer, whose
income level is y, if the price of good 1 changes from jl_]? to pi}? In utility
terms, we can talk about the consumer’s levels of indirect utility v(f-:"lo’ P e
Pw ¥) and v(JUi?', D2s - P ¥)- Let me denote the first utility level by v and

the second by V'. To measure the impact in dollars instead of utility, two
measures of dollar compensation are employed.

Definition 12.8. The equivalent variation is the amount of money EV that
must be added to y so that the consumer is indifferent between having y at the
new price JU;-" and y + EV at the old price i _]?. The compensating variation



is the amount of money CV that must be subtracted from y so that the
consumer is indifferent between having y at the old price f-"? and y — CV at
"3

L

Let me rephrase the definitions in terms of indirect utility. The equivalent
variation EV is such that the consumer is equally well off with the new price
and y, or with the old price and y + EV. In symbols,

UL P2y . D W) =00 02, - o PRy ¥+ EV).

And the compensating variation CV is such that the consumer is equally well
off with the new price and y — CV, or with y and the old price, which is

the new price Ji

D05, s Dl A — N SR 10 s DU U

The signs of CV and EV are designed to be positive when the change in

price makes the consumer better off and negative when she is worse off To see
. . ., o no_ oo
this, consider separately the cases pl i and pl g

. prii' < E_]?, then the consumer is presumably better off because the price

ofa consumption good has declined. (She is no worse off; certainly.) In this
case, both the equivalent and compensating variations are positive: We
know that v(pii', P oo Dpp V) 2 v(p?, P2 - Ppo ¥)> SO to increase the
right-hand side up to the level of the lefi-hand side, we must add a positive
amount to y on the right-hand side. And to get the lefi-hand side to decline
to the level of the right-hand side, we must subtract a positive amount ffom
y on the lefi-hand side. Going back to the definitions of EV and CV, this
makes both positive (or, at least, nonnegative) numbers.

* On the other hand, if pii' > E_]T, the change in prices makes the consumer
somewhat worse off (or, at least, no better off). That is, v(pii', P2 s Pio )
< v(lilj_lo, P2» - Ppo ¥)- To lower the right-hand side down to the level of the

lefi-hand side, we must add a nonpositive amount to y on the right-hand



side; to raise the lefi-hand side up to the level of the right-hand side, we
must subtract a nonpositive amount ffom y on the lefi-hand side. That is,
both variation measures are nonpositive.

In terms of our discussion of consumer surplus, the most useful equations
that characterize the quantities EV and CV involve the expenditure function. I’11
give these characterizations in the form ofa proposition.

Proposition 12.9. [f V° is the level of utility obtained by the consumer at the
old prices, and V' is the level of utility she obtains at the new prices, both with
income y, then

EV=e(p,p, ..., Pk, 0" ) — e, P2 ..., Pk, V"), and
CV=e(p!.p,... -p-;;.-t.'") — &7 Doy o P )

Proof. To save space, I abbreviate (Li'-"‘lo’ D2s s pk) by p° and (J‘[jli!', D2 s D))

by p".

Then e(p”, V') = e(p®, V) =y, because V' is the utility obtained at p” with
income y, and v’ is the utility obtained at p° with that income. Furthermore,
e(p®, V') is the amount of income it takes to obtain V' at the old prices. EV is
defined to be the quantity such that, with income y + EV, the consumer can
reach at the old prices the new level of utility, so

y+EV=e(°0") or EV=e@®v")-y=e@’o") - e(p",0").

And e(p”, V) is the amount of money needed to attain utility v’ at the old
prices, which is also y — CV, or

y—-CV=e(p",v°) or CV=y-—e@p",v")=e@’ ") — e 1Y)
|

Hicksian demand, the expenditure function, EV, and CV



Having tied EV and CV to the expenditure function, the next step is to bring
Hick-sian demand into the mix. This step parallels Propositions 12.2 and 12.3
and Corollary 12.4; we collect the analogous results in a single proposition.

Proposition 12.10. Fix all prices except for price of good 1 at levels p,, ps,
....Py, and, for a given consumer, fix a utility level v in the range of her utility
function. Let H,(p,) denote Hicksian demand for good I as a function of py,
with p, through p; and v fixed.

a. Ifp', >p", 'y € H|p"), and h"| € H\(p")), then h'y < h"|. In words,
Hicksian demand for a good is “downward sloping” in its own price.

b. H\(p,) is singleton for all but (at most) a countable number of prices p.

c If HI(EJE) is a singleton set, then p, — elpy, py, ... Pp V) is
differentiable in p| at EJE, and its derivative in p| is the single element h;

Hy (1Y),

of .(331)

d. For two prices for good 1, p'| and p"|,

i

Py
ey, P2y o Py V) — €0, e PRV = | () dpn,

Py

where hy(p,) denotes the single element of H(p,) for all values p, at which
H,(p,) is singleton, and is defined arbitrarily (say, as some value in H(p,)) at
the countable number of prices where it is not singleton.

I will leave all parts of this for you to prove. You can virtually copy the
arguments from Section 12.1. (For part a, there is no parallel result in Chapter
10 to Corollary 9.13, so you must prove it from first principles.)

Combining Propositions 12.9 and 12.10d gives us the following corollary.



Corollary 12.11. Fix some consumer and a single good that the consumer
demands. For convenience, label the good with index 1. Suppose that the

consumer, at prices p° = (j}%, Dp» - Dy) and income y; has indirect utility V0
= v(po, ¥). Suppose that the price of good 1 changes to J[jlii', while the other
prices all stay at their old levels; write p" = (J[jlii', D> - D), and let V' =

wp",y). Then if EV is the equivalent variation for this change in prices (at the
income level y), for this consumer, and CV is the compensating variation, we
have

P
EV = (P, ... o), ™) dpy, and (12.1a)
A
Py
V= ha((p1. p2, ..., Px), %) dpy, (12.1b)
Py

where hy denotes Hicksian demand for good 1, which is single valued for all

but (at most) a countable number of values of p,.

Consumer surplus for one consumer, EV, and CV

This corollary is enticingly close to what we are after, if we agree that CV and
EV are reasonable measures of the dollar-denominated change in the consumer’s
welfare, caused by the change in price of the good, and if in constructing
consumer surplus, we are allowed to use Hicksian demand functions rather than
Marshallian demand functions.

Of course, since h(-, V) will, in general, be diferent fom A(:, V'), the
corollary tells us something that you probably already realized: In general, the
compensating and equivalent variations will be diferent. But ifthe change in the
price of good 1 is small enough so that v’ and V' are near to one another, and if
(in consequence) A(-, V) and A(:, V') are close to one another (when evaluated at



the same price arguments), then CV will be close to EV, and the consumer-
surplus integral, evaluated using Hicksian demand instead of Marshallian
demand, has a clear and pertinent interpretation.

And, to the extent that Marshallian demand for good 1, which I’ll write in

shorthand as d,(p,), is approximately the same as Hicksian demand, then EV

and CV are both approximately the same as the integral that conventionally
defines ““the change in consumer surplus” resulting fiom a change in the price of
good 1.

The previous paragraph should set off a number of alarm bells:

For one thing, Marshallian demand for good 1 is a function of the price of
good 1, and also the prices of all other goods and income. So when I say
that 1 write Marshallian demand for good 1 as d|(p,), it is implicit (and

now explicit) that I mean the finction p; — d,((py, py, ..., P;)»¥), Wwith
those other arguments held fixed.

And T (as yet) have no right to talk about a Marshallian demand function.
Marshallian demand can be multivalued. Of course, the same is true of
Hicksian demand. But what saves me in the case of Hicksian demand is that
I know that if I vary p; over some interval E_]? to pi‘, where the other

prices and the target utility level are fixed, Hicksian demand is multivalued
at no more than a countable number of points. (If this statement confuses
you, go back and reread the previous proposition.) I know this because the
expenditure function is concave in price, and Hicksian demand provides
supergradients of the expenditure function. No similar result holds for
Marshallian demand. In fact, one can provide examples in which Marshallian
demand for a good consists of an interval of values as the price of that good
varies, for every price of the good in an interval of values. (See Problem
12.4.)

This unhappy possibility (Marshallian demand is multivalued for every
price between j_]_l"-" and J'Lili-“', fixing all other prices and income) presents a

formidable challenge for how we will formalize the conventional definition of
the change in consumer surplus for this price change. The conventional
definition involves the integral under (to the leff of) the demand function for



the good; what do we do when there is an interval of possible values to pick
for the level of demand, for every price of the good?

e What does Marshallian demand is approximately the same as Hicksian
demand mean? On the one hand, as long as the underlying preferences are
locally insatiable (an assumption we maintain throughout), Proposition
10.18 seems to say that Marshallian demand is exactly the same as Hicksian
demand. On the other hand, the arguments of Marshallian demand and
Hicksian demand are different: Both are finctions of the vector of prices, but
Marshallian demand has income y as an argument, while Hicksian demand
is a function of a target level of utility.

We can clear up at least the last of these possible confusions/complications:
Supposing for the moment that Marshallian demand is a function, and writing it
a bit less compactly as d;((py, py, ---» Py)s ¥)» the conventional definition of the

change in consumer surplus is
(-]
Py

di((pr.pa.. ... px). V) dpr. (12.2)

Py
Corollary 12.11 tells us that EV and CV are, respectively, similar integrals, but
with respective integrands ,((py, py, ... pp), V') and hy(py, Py - PR vo).
Proposition 10.18 establishes that

L'II[U)?-FE. N/ o8 ) B hl({}ﬂ?-}t. e PR, ™),

but at arguments p; other than pi‘, they aren’t the same; instead what is true is

that

di((. o2, - .. 06, W) = a((P1, s - D) V(D14 D0) 1)),

so that when p, reaches the upper limit of the integral j_]?, d| is the same as &

with target level of utility v*. In the integral that conventionally defines



consumer surplus, (12.2), the integrand is the same as the integrand in (12.1a)
(which gives EV) at the lower limit of the integral, but the integrands
(presumably) move apart as we move toward the upper limit of the integral.
And the integrands in (12.1b) (which gives CV) and (12.2) are the same at the
upper limit of the integral, but are otherwise different. The hope is that the
divergence in integrands is not too large, so the integrals are approximately the
same; indeed, to the extent that we don’t have a particular reason to choose EV
or CV as the appropriate measure of compensation, we’d like their integrands to
be close together, so that if EV and CV are not the same, at least they are close
to one another.

The obvious (and more difficult) thing to do at this point is to try to
construct measures of how far apart the three integrands are fom one another,
based on underlying properties of the consumer’s preferences. This line of attack
is undertaken, for instance, in Willig (1976). We’ll settle here for something
much easier: Since we know that the integrand in (12.2) agrees with the
integrand in (12.1a) on one endpoint of the integral and with the integrand in
(12.1b) on the other end, we’ll develop conditions under which, at all
intermediate values, the integrand in (12.2) lies between the other two.

Before doing so, we must first confiont the problem of multivalued
Marshallian demand. In fact, confront is the wrong word; we simply assume the
problem away:

Assumption 12.12. For all values of prices, incomes, and target utility levels
that are relevant (that appear in any of our integrals), Marshallian demand
for good 1 (hence Hicksian demand for good 1) is single valued.

An excuse for this assumption is that, in every application of consumer surplus
of which I am aware, demand is single valued. Be that as it may, the
assumption permits the next definition, which is key to the line of attack we
will follow.

Let d, denote the (single-valued) Marshallian demand for good 1, and /, the

corresponding Hicksian demand. Prices for all goods except good 1 are fixed
throughout, so I suppress those arguments in d; and /;. But I will want to vary
the price of good 1, the consumer’s income y, and the target utility level v, so I
write things such as d(p|, y) and /;(p, v).



Definition 12.13. For a region of prices, income levels, and utility levels:
Good 1 is normal over the region if d|(p|, y) is nondecreasing in y over that

region, and it is inferior if d|(p,, y) is nonincreasing in y (in both cases, for
all values of py in the region). Good 1 is Hicks-normal over the region if
hy(py, v) is nondecreasing in v, and it is Hicks-inferior if h(p,, v) is

nonincreasing in v (again, for all p).

I am not being very precise with the qualifying phrase “over the region,” but the
idea is that, when we need these concepts, we won’t need them to hold
universally (for all prices, income levels, and utility levels), but only for prices,
incomes, and utility levels in certain ranges. Indeed, the way this definition is
rendered makes it impossible for a good to be inferior globally unless it is never
consumed, since (obviously) d,(p;, 0) = &(py, u(0)) = 0.

Note that, according to this definition, if demand for a good is constant in y
(or v), at least for some range of prices, income levels, and utility levels, then
the good is said to be both normal and inferior (over those ranges). The more
common expression in economese (the informal language of economists) is that
demand for this good exhibits no income effects.

Lemma 12.14. Good 1 is normal over a region of prices and incomes if and
only if it is Hicks-normal over the corresponding region of prices and utility
levels, and it is inferior if and only if it is Hicks-inferior.

Proof.4 Suppose y > y'. Fixing prices at p, let v = wp, y) and v' = v(p, »"). By
local insatiability, v > v. And then d,(p;, ) > [resp., <] d;(p;, y) if and only
hy(py, v) > [resp., <] hy(py, V). So if good 1 is normal, it is Hicks-normal; and
if it is inferior, it is Hicks-inferior For the converse half repeat the argument,
noting that ifv > v' and we let y = e(p, v) and )’ = e(p, V'), then since e is

strictly increasing in v, y > . .

Proposition 12.15. Write ACS for the value of the integral defined in (12.2);
that is, ACS is the change in consumer surplus, conventionally defined. Then if
good 1 is (Hicks-) normal for prices of good 1 from EJ? to pi’-‘- and target



utility levels v’ to V', EV > ACS > CV. And if good 1 is (Hicks-) inferior over
this range of prices and target utility levels, then EV <ACS <CV.

Proof. The proof is almost obvious at this point (and can be rendered in a
picture, Figure 12.3.) Suppose the good is normal and that 3_11‘5' > pi‘. This

implies that v* <V'. Moreover, for every value of p; between lin_]? and pii', the

corresponding indirect utility at income level y satisfies v0 < U@1s Dy - P

y) <V". Therefore, since good 1 is normal,

ha(py, 0™) 2 B (1, D)) = do(D1, ) 2 By, o).

The integrand in (12.1a) is greater than or equal to the integrand in (12.2),
which is greater than or equal to the integrand in (12.1b), and so the integrals
inherit those inequalities.

On the other hand, ifp? < pi!' and good 1 is normal, these inequalities

all flip, but also the integral’s upper limit is less than its lower limit, which
again reverses the sign, so the integrals keep this ordering. (Figure 12.3 is
drawn to cover this case.) And the cases where the good is inferior reverse the

inequalities.
|

It is worth observing that, for normal goods, Marshallian demand is steeper
(has a more negative slope) than Hicksian demand, assuming that these demand
functions are all diferentiable, so that we can speak of slope at all. But if we
were willing to assume that the functions were differentiable, we’d get the
picture of Figure 12.3 via the Slutsky equation, adapted to this context:

fj";l.‘; _ ijlilll - f]Tl
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Figure 12.3. Consumer surplus and the equivalent and compensating
variations. Ifthe price of the good rises, the consumer’s utility falls. For a
normal good, this means the corresponding Hicksian demand functions, at
the original price, at the new price, and at prices between the two, are
arranged as shown. And so, in particular, Marshallian demand lies above
new-utility Hicksian demand and below old-utility Hicksian demand.
Hence the change in consumer surplus, the integral to the lefft of
Marshallian demand, is greater (negative) than the intergral to the leff of
new-utility Hicksian demand, which is the change in expenditure at the
new utility level, which is EV, and it is less negative than the integral to
the leff of old-utility Hicksian demand, which is the change of expenditure
at the old utility level, which is CV.

We know that Hicksian demand is downward sloping, and if demand for the
good is normal, the income effect term is a minus sign in flont of a positive
quantity, so the slope of Marshallian demand in own-price is even more
negative than that of Hicksian demand.

The derivation we’ve supplied is more general than this Slutsky-equation-



based argument, because we didn’t make assumptions about the differentiability
of our demand functions. I remind you, however, that we did need to assume
that Marshallian demand (in the correspondence sense) is singleton valued (and,
therefore, so is Hicksian demand). Can we do without this? We know that
Hicksian demand is multivalued (for a given utility level) at no more than a
countable number of prices, so the integrals that produce EV and CV are
perfectly well defined, even if Hicksian demand is not singleton valued. You
might hope for something like: As long as a Marshallian demand function is
selected from the Marshallian demand correspondence, however it is selected,
the change in consumer surplus defined from the selected demand function lies
between CV and EV. To do this, though, we need to know that the selected
demand function lies between the two Hicksian demand functions (for the old
and new utility levels). And while the number of prices at which Hicksian
demand can be multivalued for a given utility level is countable, the number of
income levels for which it can be multivalued, fixing prices, can be a good deal
larger. Depending on how you define a normal good (or an inferior good) for
multivalued demand correpondences, results can be obtained. But those
definitions become crucial. (And I leave you to it, if you are interested.)

Consumer surplus for multiple consumers

Our final task is to move ffom one consumer to an entire marketplace of
consumers. But this is easy. Market demand is just the sum of demands coming
from individual consumers. The change in consumer surplus is the integral
“under” the market demand function, so if you interchange the summation and
integration, you find that the change in aggregate (market) consumer surplus is
just the sum of changes in individual-consumer consumer surplus. And each of
those is a compromise between the two measures of appropriate dollar
compensation, EV and CV, for the individual consumer.

Bibliographic Notes

The concept of consumer surplus is attributed in the literature to Dupuit (1844).
Alfred Marshall developed and popularized (at least, among economists) the use
of this concept; it use has been the subject of controversy ever since, with such
luminaries as John Hicks promoting its use and Paul Samuelson decrying it.
The strongest case for its use would seem to arise in situations where a tight



(and small) bound can be put on the difference between the compensating and
equivalent variations; see, for instance, Willig (1976) for such a bound.
Producer surplus, being the change in profit, is relatively free of this sort of
controversy.

But the general idea that one can sum in dollar-denominated terms the
impact of a policy on individual firms and consumers and make on that basis
social welfare judgments is controversial on a completely different plane and
takes us back to Chapter 8 and the foundations of welfare economics and social
choice. Arrow’s (1963) chapter on the compensation principle is (once again)
recommended.

Problems
*12.1. Proposition 12.3 says that if 0 is the singleton set {0
[ ] P y 7z i ( pl) g {_,1}
(fixing all other prices), then # viewed as a fanction of p; is differentiable at EJE
, and that derivative is:u. Prove the converse: Ifn/; viewed as a finction ofp,,
is diferentiable in p, at EJE, then (a) Z]-.f " (f-"g) is singleton, and (b) the sole
element of 77 * (19 is that derivative.
Z{" (py

m 12.2. Supply the details of the proof of Proposition 12.10.

| [2.3. The developments of producer and consumer surplus in this chapter
concerned supply coming from profit-maximizing firms and demand coming
from utility-maximizing consumers. But in some cases, supply comes flom
consumers who sell out of their initial endowment of the good, and demand
comes ffom firms that use the good as a factor input to their own production
process. How do we interpret “producer surplus,” when some or all of the
supply comes ffom consumers (and when, in consequence, it would make more
sense to speak of “seller surplus”)? How about “buyer surplus,” if purchasers of
the good include both consumers and firms?

m *12.4. Provide an example of a consumer with continuous and locally



insatiable preferences where, fixing the prices of all goods but 1 and fixing
income at some particular value, (Marshallian) demand is an interval of values
for all prices in an interval of prices. (This is most easily done with an
indifference curve diagram, with & [the number of commodities] = 2.)

m 12.5. Make precise the Bllowing statement: If there are no income effects in
demand for the good over the relevant range of prices, etc., which is to say
that Hicksian demand for the good is constant in the target level of utility, then
the change in consumer surplus = EV = CV.

7 1

! Panel a could be the supply correspondence of a single firm—that is, a
ik * —and it could be the industry or aggregate supply correspondence, denoted
Z*l. But once we introduce panel b and the production-possibility set Z, we
seem to be speaking of a single firm. This isn’t really so; for a given set of
firms, we can speak of their aggregate production-possibility set. But we won’t
meet this concept until next chapter, when we discuss aggregation in more
detail.

2 1 have the second edition of Royden, in which these results appear in
Chapter 5, sections 4 and 5.

3 EV and CV are often defined more generally, for any pair of price vectors.
But we will use them only for pairs of price vectors in which only one price
changes.

4 You were asked to prove this, more or less, in Problem 10.7.



Chapter Thirteen




Aggregating Firms and Consumers

With the exception of Chapter 8, concerning social choice, this book has so far
been concerned with the choices of a single consumer or firm. In many places
those choices have been in contexts where, presumably, other consumers and/or
firms are around. Indeed, we’ve been particularly concerned with choices made
in market settings in which other buyers and sellers, and even many other
buyers and sellers, are found. But, with the exception of Chapter 8 and a bit last
chapter, we haven’t seriously considered the interaction of diverse consumers
and firms.

That changes next chapter, when we take up issues of general equilibrium.
In the models we will study, there will be (finite numbers of) consumers and
firms, interacting through price-mediated markets. To prepare for this, in this
chapter we address the question, What characterizes the (economic) aggregate
behavior of collections of consumers and collections of firms? Answers to this
question could be interesting on at least three grounds:

e It can be convenient to formulate specific stylized models at the aggregate-
ofconsumers and/or aggregate-offirms level, rather than putting into the
models hosts of consumers and firms. Readers with some exposure to so-
called representative-agent (or -consumer, or -investor) models in the
stochastic-general-equilibrium branches of macroeconomics and macro-
finance will know about this; it is very convenient to suppose that
equilibrium prices are determined by the first-order conditions of a single
consumer’s optimization, where that consumer (in equilibrium) must be
consuming the social endowment.

» Part of our interest in results such as the Integrability Theorem has been
rationalized on econometric grounds: To fit (say) a collection of demand
data, it might be convenient to begin with a parametric set of demand
functions, rather than with utility finctions. But we then want to know that
the demand functions we write down do, in fact, correspond to utility
maximization according to some utility function. The Integrability Theorem
provides the insurance sought: I the demand functions satisfy certain
conditions, some utility function generates them.

Those results concern demand by a single consumer. The rise of the internet



and other electronic data-collecting devices increasingly provides the
empirical economist with data on the behavior of single consumers, but still
much of the data we see arrive in aggregate form. So on just the grounds that
we had for wanting to know whether alleged Marshallian demand functions
are legitimate, we want to know, When are alleged aggregate demand
functions the aggregates of demand by a collection of legitimate (meaning,
utility-maximizing) consumers? And, in the context of data on firm
behavior, when are alleged aggregate netput functions the aggregates of
netput decisions by profit-maximizing firms?

Aggregation or, more precisely, averaging, can (asymptotically) produce
desirable properties in aggregate supply and demand that may be
unreasonable to assume for the supply and demand correspondences by
single consumers and firms. If the production-possibility set Z of a firm is
not convex, the firm’s profit-maximizing netput correspondence can be
nonconvex valued. If a consumer’s preferences are not convex, her
Marshallian demand correspondence can be nonconvex valued. As will be
seen next chapter, such things are problematic in general equilibrium
analysis or, put more positively, convexity in supply and demand is a
useful assumption to make. Can aggregation “smooth over” this sort of
difficulty? Ifso, how?

Please note, when thinking in terms ofa single market, it is natural to think
about the buying and selling sides separately, which means thinking about
aggregate supply and aggregate demand. This is so even if some of the demand
comes ffom firms purchasing inputs and/or if some of the supply comes from
consumers selling from their endowment of goods. But the issues introduced in
this chapter are, at least at the start, better thought of in terms of the aggregate
behavior of (profit-maximizing) firms and the aggregate behavior of (utility-
maximizing) consumers. Hence the terminology set forth in this chapter’s title
sets our agenda, we first aggregate the netput decisions of firms, then the
demand and net demand decisions of consumers. And then we discuss the sense
in which aggregation can “smooth out” the supply and demands of individual
firms and consumers.

The Minkowski sum of a finite collection of sets



Thoughout this chapter, we have finite lists of nonempty subsets of R, such as
X}, ...X,, and we want to form the set that consists of all sums of selections

from these sets, one element selected from each set. That is, we construct

{:r e R¥:p=1y+...+ 1, for some selection (21,...,2,) € Hle}

This “sum of the sets” is called the Minkowski sum of the sets X| through X,
in what ©llows, when it is clear ffom the context that the X; are sets, we will
writez o Y for this Minkowski sum. (When one or more of the sets in

)1’

the list is empty, the standard convention is that the Minkowski sum of'the list
is similarly empty.)

13.1. Aggregating Firms

The firm half of the story is nearly trivial, as long as one assumption is met.
The fllowing proposition tells the whole story.

Proposition 13.1. Suppose that, for [ = 1, .., E firm f has nonempty
production-possibility set Z < Rk For p E Rk , let nf(p) be the profit

function of f evaluated at p and 7z *(p) be the profit-maximizing netput choices
of firm f; that is,

r(p) = SUD,.p P2 and M) ={2eZfip-2 =1 ).
Define:

th te production-possibility set 7 +— E ‘ 7F.
e aggregate production-possibility set 7 +— =1 "

for each p € Rk the aggregate profit function

T(p) == E}F wf () and



for each p S Rk, the aggregate optimal-netput set

Z¥(p) = Zil ZH .t

Then for each p € Rk s

mp)=sup, ., p-z and Z'(p)={:€Z:p-z= T(p)}.

Restating all this in words, we define: the aggregate production-possibility set
is the Minkowski sum of the production-possibility sets of the individual firms;
the aggregate optimal-netput set at the price vector p is the Minkowski sum of
the optimal netput sets for the firms at that price vector; and the aggregate
profit function, evaluated at p, is the sum of the profits of the individual firms at
p. The proposition then says: The set of aggregate optimal netputs at the price
vector p—the Minkowski sum of the optimal decisions firm by firm—is
precisely the set of optimal netputs atp by a firm created by merging the
production-possibility sets of the individual firms. And aggregate profit—the
sum of the profits of the individual firms—is precisely the profit of this merged
mega-firm. The firms in aggregate behave as if they were a single (price-taking)
mega-firm.

Proof. Fixp € Rk .
Since each Z is nonempty (by assumption), fix for each f some
:c:.f = Ef. Let ;;-f =p- ;:ﬁ Clearly,
-~ fa a o AR, — .— - -
wi(p) 2 #F > —o0, w(p) = ) ; /(D) > —oc
and, since # — -?f o Y i, W
7 Ef e 7, sup, . P-2 > —00.
Suppose that sup,c, p - z is finite. Letz, € Z be within 1/n of the
supremum; that is, p - z,+ 1/n >p - z Prall z € Z. Sincez, € Z, there are
«F e Zf, =1, ..., F, such that = — ~ -|r [ assert that p - =~ f +
212 s 2n =) f % LA 1)

I/nzp-zPralz e Z, for all f; suppose to the contrary that for somef', p -



- S V) <p 2 for somez’ € Z'.  Then
“r

i :':'f +E_;F='_f" :fi e 4 and
pr=p-af +Eﬁf, p-2f >poaf F1/n+ Y D paf =
E}_ 11_; f —+ ‘]_ o — j-_] AT ]_ T, a  contradiction.
Therefore, p - := + 1l/n > nf(p) for allf, and hence

f
“2n+ Fin = E_f (p-2f +1/m) 2 3¢ 7 (p) = n(p)

. Hence, sup,e,p - z+ F/n>n(p), and since n is arbitrary here, sup,c,p - z

> n(p).

Of course, ifsup,c,p - z = oo, then it is > z(p).

To get the reverse inequality, suppose that z(p) is finite. (Ifit is infinite, we
have the reverse inequality automatically.) Since we know that each ' (p)is > —
o, n(p) < oo implies that each nf(p) < . For a given n, let :g now be some

element of Z/ that is 1/n within optimal; that is p - = f+im >p-zhralz €
“n
f s _ e . . . .
Z. Let = z_f _‘.l;i, which is in Z. T assert that, forallz € Z, p - z <
p -z, + F/n. To see this, suppose z € Z and write z as the sum of elements of
the Z/, one for each e E o f. By assumption, p - = F+1n >p -7
- f - '-'n

for each f, and summing on f gives the desired inequality.
Therefore, p - z, + F/n Zsup,e zp * z. Butp - = F Snf(p) for each f; and
“n

Ptz Ly o sonp)+Ffn= Ef"rf@ Finzp-n+Fn>sup,c,p-;
let n go to infinity, and you have the desired (reverse) inequality. This implies
that z(p) = sup,c ,p - z.

Suppose 2" € Z attains the supremum in sup, e, p - z. Write z" as the sum

a o *
of eclements, one fiom each Z, Orsz or z* = E}_ gf . Of

course,p . 7 * < s ®), S0



SUP,cz P2 = 2t = ZJ: p- 2/ = E_f Wf(_m = 7(p)

, and since we know the first and last terms are equal, we must have equality
everywhere. Moreover, we must have p - 7= ‘(p) for each f; if we had a strict
inequality for any £, there is no way to make it up (to get the equality of the
sum) for some other firm. Therefore, Z/* € Z/"(p) for each p, which means that
€ 7).
Conversely, suppose that z* € Z'(p), so that »* — E o ;jar * where
]

each * €7 *(p), Thenp - i = (p) for eachf, and therefore

poxt = Yyp- =X, 7f) = 1) = sup,; p -2

where the last equality follows ffom what was shown previously. That is, €
Z'(p) implies thatz* achieves the supremum. That gives us the fiull
proposition.”

That is a lot of proof for something that is (at worst) just the other side of
obvious, but ifyou take it a step at a time, there is nothing hard happening.

And the result is worth the tedious hassle. We have simple necessary and
sufficient conditions for an alleged profit function to be the profit function for
some production-possibility set, given to us in Propositions 9.3 and 9.14: the
function must be homogeneous of degree 1 and convex. Given a finite set of
such functions, their sum is homogeneous of degree 1 and convex, so the
aggregate profit function (obtained by summing individual profit functions) has
all the properties of a single-firm profit function. In fact, we don’t even need to
know that the two necessary-and-sufficient conditions survive addition, since
Proposition 13.1 tells us that the sum of the individual-firm profit finctions is
the profit finction of a firm formed by summing the individual-firm production-
possibility sets. And, moreover, the sum of their optimal-netput
correspondences is the aggregate optimal-netput correspondence for this mega-
firm. Aggregating the netput decisions of profit-maximizing firms gives us an
aggregate that has precisely the properties we’ve derived for the individual firms.

Now recall the first sentence of this section: The firm half of the story is
nearly trivial, as long as one assumption is met. Since we didn’t add any



assumptions, you may wonder what is that assumption. (We did assume that
each firm in the collection of firms had a nonempty production-possibility set,
but that’s not it.) The implicit assumption is that no firm, by its netput
decision, affects the production possibilities of the other firms. To use
terminology that we’ll develop more fully in Chapter 15, no firm generates an
externality for any other firm.

Recall from last chapter the one caveat we inserted into the simple story of
producer surplus: While every firm in an industry may be small enough so that
it takes the prices it faces as given, when an entire industry shiffs its production
level, that may cause the price of some factor of production to change. Therefore,
the “empirical” supply curve for an industry—what we see in the data—may not
be the same as the sum of the individual-firm supply curves, which are based on
the price-taking assumption. In a sense, that is a form of externality exerted by
firms in the industry on each other—collectively, the firms change the prices of
factor inputs that each faces. The caveat in this chapter is a bit different, because
in the story here, we’re talking about aggregating optimal netput choices as a
function of the whole price vector. But it is still possible, not through prices but
by other means, that one firm’s production possibilities are influenced by the
choices made by other firms. If for instance, two ofthe firms are located along a
river, and if both use the river water both as an input and as a means for
disposing of unwanted by-products flom their production, then the firm
upstream, by disposing of its unwanted by-products, may make it impossible
(or more costly) for the downstream firm to use river water in its production
process. (This is a very standard example of a production externality.) The point
is, Proposition 13.1 and the wonderful result it provides concerning the
aggregation of firms’ netput decisions and profit functions, implicitly rules all
such things out.

13.2. Aggregating Consumers

When it comes to aggregating consumers, the story is much less nice. We
begin with a commodity space Rk and a list of consumers, indexed & = 1,

....H.?> Consumer / is characterized by preferences }—h, defined on Rk, and a

level of income yh We’ll always assume that _‘_1—” is continuous, so it has a



continuous representation ut. We'll also always assume that }—h is locally
insatiable.

For consumer %, we let (p, yh) = Dh(p, yh) denote the Marshallian demand
correspondence, where the innovation in notation is the superscript # on D.
Aggregate consumer demand (at p and ()}’)h:],...,H) is the Minkowski sum

k hiy  and the ideal situation is for this sum to be D(p, ),
R D (pyt)
5 1 2

which is Marshallian demand at prices p and aggregate consumer income or
wealth Y= E B uh, for some representative consumer with preferences

or a utility function that somehow aggregates the preferences/utility functions of
the A individual consumers.

Clearly, this is a lot to hope for. But there are very special cases in which,
remarkably, it works.

Proposition 13.2 (Antonelli 1886). Suppose that each consumer h has the
same utility function u and, moreover, that utility function represents convex
and homothetic preferences.4 Let D(p, y) denote Marshallian demand
according to this (one) utility function at p and y Then for any income
distribution (yh)hzl, ..., H and price vector p,

H H
Z Dip. ;;hj =D ;}.Z ;..'h
k=1 h=1

Note that, in the statement of the proposition, we can omit a superscript 4 on D
because all the consumers, by assumption, have the same preferences.

Proof. If any ) = 0, then D(p, ) must be {0}, and D(p, 1) does not

contribute to the sum of individual demands. For this reason, we can eliminate

all h such that y' = 0 fiom consideration (unless they all equal zero, in which

case the result is trivial). Or, in other words, we can assume without loss of

generality that )/7 > 0 for each h. Let - B and let o = yh/y. That
y=2 ¥



is, o is ’s share of the total income.

We now show that the lefi-hand side of the display is a subset of the right-
hand side. Choosed” € D@, )/’) for each h; we know that d” is weakly
preferred by 4 to any bundle x such that p - x < )/’, so by homotheticity of
preferences, d"/a is weakly preferred to any bundle x/d where p-x< )/’, which
by a simple change of variables is any bundle x’ such that p - x’ S)ﬁ/a/’ =y
That is, fr each h, d"/o" € D(p, y). This is true for each s, and so by
convexity of preferences,

Zh:ﬁh nh Zdh

is weakly preferred to anyx such that p - x <y, which is what we need to

ooncludethatz {‘f = DU) U:'

Conversely, suppose d € D(p, y). Then an easy argument, similar to the
one in the previous paragraph, shows that dd € D@, )/’) for each 4. But then

Zh {'I:h'd — 4] is in the Minkowski sum Zh DU-’ uh) This

gives set inclusion ofthe right-hand side in the lefi-hand side, and we’re done.

Identical homothetic (and convex) preferences is a special case, but it is not
hard to see why such a special case is (nearly) required. (Concerning the
convexity assumption, see Problem 13.1.) To keep the discussion simple,
suppose we are looking at an open domain of prices and income levels over
which (1) each consumer’s demand is single valued and differentiable and
satisfies Walras” Law and (2) aggregate demand for each good is independent of
how aggregate income is divided among the consumers, as long as the division
keeps us in this region. Write a’h(p, yh) for the demand by consumer / at p and
Y. Since demand for each good i is independent of how we split the total
income y over the consumers (at least, locally), then the change in demand for
good i by consumer /4 if we increment her income by a small amount J has to
be just ofSet by the amount the demand for good i changes if we decrease the



income of some other consumer # by d. (We do assume that there are at least
two consumers.) Since we are assuming differentiability, Taylor’s Theorem tells
us that this means that

od? _adY
- ,

i
{pa™)

at least inside the open set of prices and income levels for which aggregate
demand is independent of the distribution of income. But if this is true when A
has income )/’ and /4 has income )/’, then it must also be true when we keep the
income of /1 at y}’ but move /’s income to some other level inside the region.
That is, ify]’ and a-h are two income levels for /2 inside this region, then the
partial derivative ofdhl- iny at)/’ must equal the partial derivative in y at ﬂ-h (for
fixed p), since both must equal the right-hand side of the display above. But
this means that, inside this region, demand for each good i by each consumer %
must be affine in y, where the slope and intercept terms can depend on p. And

the slope for 7 must also be the slope for every other # (given p). That is,
within this region,

foreach h, df[p. y") must take the form ai‘[p) bt (13.1)

where (so that Walras” Law continues to hold) we need that p - b{p) = 1. If this
is to hold at all levels of p and y, then since L-H?(p, )/’) must approach zero as )/‘

approaches zero, we would need to have lm-'f?(p) = 0, and while that isn’t quite

enough to know that preferences are homothetic, it is only because there could
be regions in the consumption space that are never demanded, and hence for
which preferences are not constrained by this aggregation property.

Suppose that, over some open set of prices and income levels smaller than
all possible prices and income levels, each consumer’s demand takes the form of
(13.1), for some functions a'f? and b;. Obviously, aggregate demand is



independent of the distribution of income, at least for prices and distributions of
income within this region. Of course, this doesn’t prove that aggregate demand
is “as if” it came fiom a single utility-maximizing consumer; I won’t attempt to
prove that here. But it is easy to show (and you are asked to do so in Problem
13.2) that if each consumer’s demand function satisfies the conditions of
integrability and the demand functions take the form (13.1) over some open
region, then aggregate demand satisfies the conditions of integrability over that
region. Assuming that local satisfaction of the conditions of integrability is
sufficient to be “as if’ a single utility-maximizing consumer was behind the
demand function for this region of prices and aggregate income (and this is the
part we do not show), this tells us that (13.1) is both necessary and sufficient for
aggregation of demand to work independently of the distribution of income,
even locally.

And, as a local condition, (13.1) is less restrictive than identical homothetic
preferences: For instance, suppose every consumer had preferences that are quasi-
linear in, say, the k th good, that is, taking the form, uh(xF v/’(xl, e Xp_p) T X
for some finctions V' : R-ﬁ'—l — R that (to keep matters simple) are strictly
concave. One can show (see Problem 3.9) that for prices p such that the relative
prices p/pj are all uniformly bounded, if each consumer has enough income, her

demand for the first £ — 1 goods doesn’t change in yh (fixing p). That is, as long
as the consumer has enough income, we have the displayed form, where b/(p) =

0 for i < kand by(p)=1/p;. So, locally, we have the required property.

Fixed shares of aggregate income

It is, clearly, a lot to ask that aggregate demand depends only on prices and
aggregate income and not on how that income is divided among the consumers.
So we might set our sights a bit lower One way to do this is to specify that
aggregate income is allocated to the consumers in fixed proportions.
Specifically, we fix positive constants {t}-h}frl that sum to one, and for

aggregate demand, we look at



H
D@p,y) =Y _ D"p,a"y).
h=1

Does this aggregate demand correspondence behave like the demand
correspondence of a utility-maximizing consumer?

In general, the answer is no. Here is a simple example: Suppose that H = k
=2 (two consumers, and two goods). The income shares are al = =0.5. At
the price vector (1, 2) with total income 40 (so each consumer has 20),
consumer 1 demands (7, 6.5) and consumer 2 demands (6, 7), making aggregate
demand (13, 13.5). At the price vector (2, 1), also with total income 40,
consumer 1 demands (7, 6) and consumer 2 demands (6.5, 7), making aggregate
demand (13.5, 13). Per Afiiat’s Theorem (Proposition 4.3), the data given here
are consistent with both consumer 1 and 2 being utility maximizers. But
aggregate demand is problematic: At the price vector (1, 2), the bundle chosen
is (13, 13.5), which costs 40 (as it should, according to Walras’ Law). But the
bundle (13.5, 13) costs only 39.5 at these prices. Apparently, if our supposed
aggregate consumer is a utility maximizer with locally insatiable preferences,
(13, 13.5) is strictly better than (13.5, 13). But, looking at the price vector (2,
1), (13, 13.5) costs 39.5 while the chosen bundle (13.5, 13) costs 40. So we
have a strict preference cycle (with a maintained hypothesis of local
insatiability).

On the other hand, here is a positive result.’

Proposition 13.3 (Eisenberg; Chipman and Moore). Suppose that each
consumer has continuous and homothetic preferences f::—h, and that for each h

there is some bundle x such that x }—h 0, while for all x € Rk, X }—h 0. Let
u" be a utility function that represents :::—h and is homogeneous of degree 1

and continuous.® Fix weights {ah} that are nonnegative and sum to one, and
define a function U : J3% — R by



H
h iy
L) = maxH [u‘L'(arh}]"" , subject to Z xh < 2.
k=l h

Then if, for a fixed price vector p, & € Dh(p, ahy), the aggregate demand
h a’ is among the Marshallian demands for a consumer with utility

function U, facing prices p with income y.7

This shows that, if we fix income shares, we get aggregation of demand in all
its glory (it is as if aggregate demand came from a single, utility-maximizing
consumer, whose preferences turn out to be homothetic) if each consumer has
homothetic preferences, although (because income shares have been fixed) they
don’t need to be identical homothetic preferences.

The proof of this proposition is not particularly difficult, but it is rather
tedious. You are asked to provide it in Problem 13.4, which provides a step-by-
step roadmap; the proofis given in the Students Guide, if you want to see it
worked through.

The consumer’s problem with endowments rather than income

A different way to fix the distribution of income is to reformulate the problem in
the manner of general equilibrium theory. We don’t get to general equilibrium
until next chapter but, anticipating a bit, suppose that consumer /’s income
derives entirely from the market value of an endowment RS Rk of goods

with which she begins.8 With endowment ¢! and facing prices p, the consumer
has p - ¢ to spend on consumption, and she solves the problem

Maximize u*(z), subjectto p-z < p-e*, z € RF,

(You may recall this variant on the consumer’s problem ffom Problem 10.8 and
then from Chapter 11, where it was connected to so-called Slutsky-compensated
demand.) This problem will be abbreviated CP-E, for the consumers problem
with endowments, rather than income. The CP-E is only a minor variation on



the CP, and many of'the results we obtained for the CP extend easily to the CP-
E:

Proposition 13.4. Consider the CP-E, where u" is a continuous utility

function on Rk, p € Rk Land &' € Rk Let D'(p, &) denote the set of

solutions to this problem, depending on the parameters p and & and let \/’(p,
) equal the value of the objective function (that is, v}’(p &) is the supremum
of uh(x)ﬁ)r X within the constraint set).

a. A solution exists for each p and &' that is, Dh(p, &) is nonempty.
Therefore, vh(p eh) is finite for every p and 2.

b. If u" is quasi-concave, Dh(p, eh) is convex, and if ul is strictly quasi-
concave, D" 12 e”) is singleton.

c.  The correspondence (p, eh) = Dh(p, eh) is upper semi-continuous and
locally bounded, and the function (p, &) — v/’(p, ') is continuous.

d. D'Gp, & =DNp, &) and V(ip, &)=V, &) for all i > 0.
e. If uis locally insatiable, thenp - x=p - ehfor all x € Dh(p, .

Note that we’re recycling the notation D for Marshallian demand (but now with
endowment-driven wealth) and v for indirect utility; I hope this isn’t confusing.
Some other fairly obvious immediate-corollaries-to or simple-extensions-of
results could be given; for instance, v is quasi-convex in p, nonincreasing in p,
nondecreasing in & (and strictly increasing in &' ifu is locally insatiable), and
so forth. But the results listed in Proposition 13.4 are what we’ll need.

Individual and aggregate excess demand

Now we introduce a bit of terminology and a change of variables. The vector x
in the CP-E is consumer /’s final consumption bundle. We use the symbol ( to
mean x — eh, calling ¢ the consumer’s net trade or excess demand. Excess
demands can have positive and negative components; they are elements of R
(not Rk), although as long as we insist on consumption bundles being

nonnegative (and we will continue to insist on this), we know that excess



demands for consumer / must satisfy the inequality ¢ > —¢”. When §G>0,h
consumes all of her endowment of good i and { more in addition; when (; < 0,

she sells — out of her endowment, retaining e"i + {; to consume.

Definition 13.5.

a. For a given consumer h (specified by her utility function u" or preferences
}—h, define

Zhp,et) = {¢ € R : ¢+ et e D (o™},

calling (p, )y = E’h(p, &) the excess-demand correspondence of

consumer h. If consumer h has strictly convex preferences, so that Dh(p, Q)
is singleton for all p and ' welet Ch(p eh) denote the single member of
E”(p, &'y and call (123 ) - d’(p, &) the excess-demand Sfunction for

consumer h.

b. For a finite collection of consumers h = 1, ..., H, each specified by her
utility function or preferences, and for a fixed vector of endowments

@Yy—p . H, define

H
Z(p) = Z Zh(p, eh).
k=1

We call p = ﬁ_’ (p) the aggregate excess-demand correspondence for this

collection of consumers and their (fixed) endowments. When every
consumer has strictly convex preferences, we define



H
(=) ot
h=1

calling p — ((p) the aggregate excess-demand function for this collection
of consumers and endowments.

Obviously, each individual excess-demand correspondence (p, c}’) = E h(p, o)

inherits a bunch of properties ffom Proposition 13.4; I leave it to you (in
Problem 13.5) to provide them and to prove the ©llowing:

Proposition 13.6. Fix a collection of consumers indexed by h = 1, ..., H,
specified by their preferences :::-h. Assume that these preferences are
continuous and locally insatiable, represented by continuous utility functions

W And fix endowment vectors J e Rk for each consumer. Then the

aggregate excess-demand correspondence p = E(p) (for strictly positive p) is
upper semi-continuous, locally bounded, homogeneous of degree 0 in the sense
that E(p)= E(Xp)for all 2 > 0, and satisfies: If { € E(p), thenp - {=0.

Moreover, if each _‘_a—h is convex, then E(p) is convex for every p.

We return to general excess-demand correspondences next section. For the
remainder of'this section, we assume that each j::—h is strictly convex, so we can
speak of individual and aggregate excess-demand functions. We continue to fix
each consumer’s endowment and focus on the excess-demand functions p —
Ch(p), with dependence on & suppressed, and on the aggregate excess-demand
fanction p — {(p), with dependence on the vector of endowments (eh)h: b

suppressed.

Corollary 13.7. For a collection of consumers h = 1, .., H with fixed

each continuous in p, homogeneous of degree 0 in p, and satisfy Walras’ Law



for individual excess demand: p - d’(p) =0 for all p.

Moreover the aggregate excess-demand function p — ((p) is continuous,
homogeneous of degree 0, and satisfies Walras’ Law for aggregate excess
demand: p - {(p) = 0 for all p.

This is a corollary to Proposition 13.6 for aggregate excess demand and to the
unstated translation of Proposition 13.4 to individual excess-demand
correspondences, once you recall that an upper semi-continuous correspondence
that is singleton valued and locally bounded describes a continuous function.

The Sonnenschein-Mantel-Debreu Theorem

Individual excess-demand functions necessarily satisfy more than the three
properties given in the first half of Corollary 13.7. For instance, the logic of
revealed preference can be applied: We can never have (for some consumer /)
two prices p and p’ such that p - éh(p’) <Oandp'- g"(p) < 0. Forifp - d’(p’) <
0, then Ch(p') is a net trade that is strictly affordable for # at prices p. Local
insatiability implies that ¢ + {''(p) _‘_-;—h &' + (p"). But the reverse inequality,
p' - (p) < 0, would symmetrically imply that &' + (p") .’ & + ((p), and
the two together are impossible.

If aggregate excess demand ¢ could be rationalized as the individual excess-
demand function for some utility-maximizing aggregate consumer, it would,
likewise, need to obey this and other strictures of revealed preference. But
aggregate excess demand is not so restricted, in general. The Sonnenschein-
Mantel-Debreu Theorem says that, more or less, the only restrictions on an
aggregate excess-demand function are those given by the second half of the
corollary.

Proposition 13.8 (The Sonnenschein-Mantel-Debreu [S-M-D] Theorem). If
¢ Rk — RY is continuous and homogeneous of degree 0 and satisfies

Walras’ Law, then for any > O there exist k consumers with continuous,
strictly convex, and nondecreasing preferences and endowments such that { is
the aggregate excess-demand function for those k consumers, for all p such that
p; l|pl| = for all i.



The “more or less” in the sentence preceding the proposition is because the
proposition only works for prices p that are strictly bounded away from the
boundary (although can be chosen as small as you wish, as long as it is strictly
positive). This version of the result is due to Debreu (1974). Sonnenschein
(1973) provided the first result along these lines, but only for a set of aggregate
excess-demand functions that is dense within the set of all continuous and
homogeneous functions satisfying Walras’ Law. Mantel (1974) then extended
the result to any continuously differentiable excess-demand function, using 2k
consumers; Debreu (1974) gave the result stated above, dropping Mantel’s
restriction to continuously differentiable functions and providing a proof with
only k consumers needed.

A number of proofs of this result (some with added assumptions) have been
given, but none of them are particularly simple, and I will not provide one here.
(See Problem 13.6 for the relatively easy start of Debreu’s proof) Perhaps the
most direct proof adds the assumption that { has uniformly bounded second-
order partial derivatives on the domain of prices {p € Rk 1 p; > ¢ for some

£ > 0.} Then it is possible to construct { as the aggregate demand ofk
consumers, each of whom has homothetic preferences. This version of the result
is due to Mantel (1979); Shafer and Sonnenschein (1982) sketch a proof (which
they attribute to Richter).

Bottom line: In this context of aggregate excess-demand functions, we (more
or less) can do no better than continuity, homogeneity, and Walras’ Law.

13.3. Convexification through Aggregation

A quick summary of this chapter so far: Aggregating the supply-and-demand
decisions of firms is simple: Absent externalities, the aggregate decisions of a
collection of competitive (price-taking) firms looks the same as the decisions of
a single competitive mega-firm. But aggregating the (excess-) demand decisions
of consumers is not so simple: Except under very restrictive assumptions,
aggregate consumer behavior is not the same as the behavior of some utility-
maximizing aggregate or representative consumer.

This neutral-to-bleak report card on aggregation is incomplete, however.
Aggregation of supply and demand can sometimes have beneficial consequences,
at least from the perspective of economic theory. In particular, aggregation can



eliminate or, at least, reduce nonconvexities.

Results along these lines take two forms: limiting and “in the limit.” This
section provides you with details about one result of the first variety, and then
informally discusses the second.’

Nonconvexities shrink: The Shapley-Folkman-Starr Theorem

Imagine an economy in which consumers have nonconvex preferences and/or
firms have nonconvex production-possibility sets. Figure 13.1a shows
indifference curves for preferences that are nonconvex; panel b shows a
nonconvex production-possibility set. In either case, the demand correspondence
(or excess-demand correspondence) of the consumer and the optimal netput
correspondence of the firm will not be convex valued; for prices in a ratio of one
to one in the figure, the consumer’s demand correspondence (and excess-demand
correspondence) and the firm’s netput correspondence will consist of two
points.]0 You will not learn why this is problematic until next chapter, but if
you are willing to trust me on this for the time being, the theory to be
developed next chapter “wants” aggregate supply and demand correspondences
to be convex valued. So, when we get to next chapter, we’ll be assuming that
firms have convex production-possibility sets and consumers have convex
preferences.

But now imagine that we have lots of consumers whose indifference curves
look like Figure 13.1a and/or lots of firms whose production possibility sets
look like Figure 13.1b. To be very concrete, imagine we have 100 consumers
with the indiference curve shown, so that, at the prices (1, 1) and the “right”
level of income or endowment, the set of Marshallian demands for each
consumer consists of two distinct points, {x,, xz}. At the problematic prices (1,

1) and the right income distribution, aggregate demand then has 101 points:
100x,, if all 100 consumers choose x,; 99x, + xp, if 99 choosex, and one

chooses xp; 98x, + 2x; and so forth. Is this better? If we measure demand on a

per capita basis, it may be, at least insofar as convexity is desirable. Because on
a per capita basis, demand at these prices is {x,, 0.99x, +.0lxz 0.98x, +

0.02xg, ..., 0.01x, + 0.99xp xp}. This isn’t a convex set. But, at least

intuitively, it is in the way of becoming closer to convex; the nonconvexity is



being filled in.

{b) Anonconvex production
possibility set. (Feasible netput
vectors are everything *south-
west" of the curve shown.)

{a) Anindifference curve for
nonconvex preferences.

Figure 13.1. Nonconvexities in demand and netput. Panel a shows the
indiference curve of a consumer with nonconvex preferences; panel b, a
nonconvex production-possibility set of firm. At the right ratio of prices
(for this figure, the ratio is one to one), the consumer’s Marshallian
demand will be nonconvex, as will the firm’s optimal set of netput
vectors.

Is this sort of “ getting closer to convex on a per capita basis” useful? Since
we won’t know until next chapter why convexity is desirable, this is obviously
a question we cannot address formally. But let me appeal to your intuition: The
reason convexity is desirable, roughly, is that it is important to knowing that,
at some set of prices, supply equals demand (or, as we’ll phrase it next chapter,
markets clear). Without convexity, you can’t guarantee that this will happen.
But “almost convexity on aper capita basis” ensures that, at some prices,
supply nearly equals demand or markets nearly clear, both measured per capita.
And, it can be argued, that’s an economically desirable state of affirs. !



For now, I’ll assume this intuition convinces you that “getting close to
convex on a per capita basis” is desirable. But does aggregation give convexity-
in-the-limit in general, or is it merely an artifact of the very special example two
paragraphs ago? It is general, as long as (1) the number of items in the aggregate
—that is, sets in the Minkowski sum—(in the current context, sets of excess
demands or netputs) goes to infinity, and (2) there is a uniform bound on how
nonconvex is each of the sets. We begin the formal development with a
definition.

Definition 13.9. The inner radius of a subset Xoka is the smallest scalar r

such that every point x" in the convex hull of X is a convex combination of

points from X that are no more than r distant (in the usual Euclidean metric)
*

from x .

IfX is bounded, its inner radius is necessarily finite. IfX is convex, its inner
radius is zero. In a sense, the inner radius of a set is a measure of how far from
being convex is the set.

For any set X & RK, write CH(X) for the convex hull of X.

Proposition 13.10 (Shapley-Folkman-Starr). If X,, ..., X, are all nonempty
subsets o, Rk, and i — J_-' -, then:
f X=X

o CH(X) =Y., CH(X,).
b. Every point in CH(X) can be written as Zr‘ . . where x; € CH(X)
=12

(this is just restating part a, so far) and, moreover, no more than k of the
X; in the sum need to be taken from their respective CH(X)); at least n — k
can come from the original (nonconvex) X;. (This is only meaningful if n >

k of course.)

c. The inner radius of X is less than or equal to the sum of the k largest
inner radii of the sets X;.

The proof will be given shortly, but first I’ll show how this can be employed.



Corollary 13.11. Suppose X, X,, ... is a sequence of nonempty subsets of RK
for some k. For n = 1, 2, ..., let 51} = E"—l _:{: the nth Minkowski

partial sum, and let Z, = {z € RF.z= (1/n)s for some s € S, }. If the inner
radii of the sets X; are uniformly bounded by B, then the inner radius of S, is

bounded above by kB (a bound that is uniform in n), and the inner radius of
Z,, is bounded above by kB/n.

This is an obvious corollary to the proposition, once you recognize that if the
inner radius ofa set X is r, then the inner radius of (1/n)X = {z : z = (I/n)x, x €
X} is r/n.

Apply this as fllows: Suppose we have a collection of H consumers,
participating in a pure-exchange economy with commodity space RK, each of
whom has (in the spirit of Proposition 13.6) fixed endowments ¢ and a
continuous and locally insatiable utility function that is not necessarily convex.
Suppose there is a uniform upper bound on the consumers’ endowments. Fix a
strictly positive price vector p. The ratio of relative prices combined with the
upper bound on endowments gives us an upper bound on how much of any
good any consumer can afford: The bound on her endowment provides a bound
on her wealth (if we normalize prices), and even if her endowment is entirely in
the most expensive good, and she uses all of this endowment to buy the least
expensive good, there is an upper bound on how much of that good she can
purchase. Suppose B is that bound. Then B is also an upper bound, probably a
very gross upper bound, on the inner radius of each A’?: h(p).

Now  consider = = i h . The proposition and
Z(p) w2 (D)

corollary tell us that this set has inner radius of kB or less. And the inner radius
of the set ofper capita (aggregate) net trades is kB/H or less. As H goes to
infinity, the sets of per capita net trades at the prices p are getting closer and
closer to convex, at least in the sense that the inner radii of these sets approach
Zer0.

Of course, this depends on the endowments being uniformly bounded; if, as
we add more consumers, we add increasingly fantastically wealthy consumers
(in the sense that one or more has a fantastically large endowment), problems
can arise. And, to get a bound on the individual’s net trade or demand, we need



to bound the ratio ofthe highest priced good to the lowest.

Similar things can be done for per firm aggregate netputs, although the
bound we are able to put on the inner radius of a single consumer’s demand or
excess demand, based on endowment size and relative prices, will be
unavailable; one generally needs to assume a bound on the nonconvexities in an
individual firm’s production possibilities.

Proof of Proposition 13.10. First we prove part a. In one dlrectlon it is easy: If
re CH(Y ; X;);thena=3%", alrt  whee the

scalarsd  are nonnegatlve and sum to 1, and each

r* €Y, X; and so 2° = Y, »f where each rte X;

But then

r=Y ate' =Y ol | Yot =3 | Tt

£ z i £
and each term Ef (}:f :I“? is clearly in its respective CH(X;), so that the
i
final term is an element of 3, CH(X)). Hence CH(X) & }; CH(X)).

The converse direction is a bit more difficult. We prove a more general
result in linear algebra:

Suppose that

n N

f E
YLy
=1 #£=1

where  the  scalars n-{t are all strictly positive and  satisfy
i

E;i:l Qf = J-_f for some B> 0, for



J i)

,;rr:E Vi E 7

i=1 =1
for some integer J, nonnegative scalars y; such that 3 y; = 8, and vectors i-:',
T

where each of the 5 is an - £
f the o is an o

We need this result for the special case = 1; for f# = 1 then (assuming each .lf
2

€ X)) the first displayed double sum represents an arbitrary point in }; CH(X)),
while the second represents a point in CH(}; X;). The proof for general § is by
induction on the number of -lf . Note that this number can never be smaller
than n (since we require that at least one ﬂ-ﬁ > ( for each i) and in the case that
Ni+..+N, =n, thenN; = 1 for eachi, and we have the desired form
automatically.

Assume, then, that the result is true for all Ny + ... + N, <M, for M > n,
and take a case in which Ny + ... + N, = M + 1. Some ,:_-l-f is smallest among

all these scalars (if there is a tie for smallest, pick any one). Renumber if
necessary so that this is true for i = 1 and / = 1. Write

.Fl
S NITE LI SRR 3
'I—l: 1=l 'n'a-::

The first summation of the three on the right-hand side is ﬂ'%(:l‘% + ..+ ;1~1
- N

), while the second and third summations are (no more than) M terms that
satisfy the induction hypothesis, but with f — ﬂ.% instead of 8. Applying the

induction hypothesis to the second and third summations taken together says
that they can be written in the form



n

J
po— -~ o
ipi= E ¥ E i

3=1 =1
where Zj % =p - ﬂ%; substituting this form for the second two summations

completes the induction step, the proof of the general lemma, and hence the
proof.

Part b is proved by a clever argument due to Zhou (1993), which employs
another general result fom linear algebra:

Ifighi= E_J;:l ('1‘_?- ::J- where z and the z all come from R and the scalars

o; are all nonnegative, then z can be written in this form where no more than

of the coefficients a; are nonzero.

We essentially give the argument in the proof of Carathéodory’s Theorem
(Proposition A3.5) in Appendix 3, but to repeat it here: Suppose
v — _?_1 ﬂj :j_'_,j, where n > + 1. Suppose we have expressed z in this
manner with as fw nonzero aj’s as possible, and suppose that number is m >/
+ 1. Renumber so that the nonzero o and correspondinng are listed as 1
through m. Since the vectors z forj =1, ..., mlie in R' and there are more than
[ of them, they are linearly dependent, and we can write [J = zj:'l _-.i_;, L4
for some coeflicients f;, not all zero. Moreover, it is without loss of generality to
assume that at least one of the coefficients ﬂj is strictly positive; if they are all
either 0 or less than zero, simply reverse their signs. Therefore,

- E;il I:ﬂ:j i ":r-.,'_.j"} :l::_ii’ and as we increasey flom zero,
eventually one (or, simultaneously, more than one) of the coefficients % — yﬂj
hits zero. Stopping with the smallest y > 0 so that this is true (so that o= 2

0 for allj and = 0 for one or more), we have reduced by one the number of
nonzero coeflicients needed, contradicting the supposed minimality of m.



Now suppose x € CH(X) is written as z?—l Ty forx; € CH(X). Write

each x; as E :'i"_‘ . where each x; € X; and the nonnegative §;
o+ 1 s : - pk >
satisfy % '1 (Thls is all taking place in R", recall, and I’ve
Z =1~

used Carathéodory’s Theorem in expressing x; as a convex combination ofk + 1

vectors fiom X;.) Create the following vectors in REHn:

ri=fe ,1.1....:4)

2ty = (X155 1:05:0,0), forg LR+,

Il
b=

I
=

Zng = A{Eni 0005 1); PO L k+1.

We have
n ksl
B Bijzii
21 ey

Apply the general result fom linear algebra. We have written z as a nonnegative
combination of the Z vectors, so we can assume that this can be done with no

more than & + n nonzero coeflicients. That is, we can express

n  k+l
i=1  j=1

with no more than k& + n of the Vij being nonzero. To get equality in the last n



coordinates (all those 1s and 0s), we must have Zj 7= 1 for each i. For each i,
this means at least one 7;; must be nonzero. This leaves us with no more than &
ofthe i’s for which there can be two or more nonzero Vip which proves part b.
Take any point x € CH(X) and write it as Z:‘_l a; wherex; € CH(Y)
for all i and x; € X; for all but (at most) k of the i’s.pl_lenumbeﬁng as necessary,
we can assume that x; € X; for all i > k (ifn <k, there are no i for which this

needs to be true), and so

k b
Ir= Z Fi + xTi .
=1 r=fo=1
where x; € CH(X)) fori <k andx; € X; fori > k Let R through R, be the
inner radii of X; through X, respectively. Then for each i = 1, ..., & x; can be

written as a convex combination of points ffom JX; that are no more than R;
distant ffom x;. (That’s the definition of the inner radius.) That is,

n N
r= Z Z t'l'fj.’f y
=1 ¥£=1
where Z“:.-l-f = 1 for each i, the a; are all nonnegative, Tf € X; foralli and /,
N;=1 (and ﬂi = 1and Ii =x) fori >k and ||x; - ;I‘f” <R;Pri<kand all

I. Now the argument we used for the second half of part a tells us that we can
write x as



Zﬂ Z“f

where each j"-f is one of the .lf and the scalars 7; are nonnegative and sum to
: T

one. Of course, fori > k, :?.-i' =x; So x is now a convex combination of the
. 2

E :“ "'_ f Once we uniﬁ)rmly bound the distance between

. T and E , we know that this upper bound is a
1 :_1
bound on the inner radius of ) ; X;.

By the triangle inequality

PBEEDIE IS A ¢

And in the sum on the right-hand side, the i th summand is less or equal to R;

fori=1, ..,kand is 0 for i > k. This gives part c. -

Nonatomic spaces of agents and Aumann’s Lemma

(This subsection will require the reader to have at least a nodding acquaintance
with the mathematics of measure and integration. It is just a discussion, so a
nodding acquaintance is all that is needed. But please skip it, ifthis isn’t you.)
The Shapley-Folkman-Starr Theorem doesn’t provide a lot of intuition as to
why aggregation convexifies on a per capita basis, as the number of firms or
consumers goes to infinity, so let me try to provide some. Imagine that you
have an infinite sequence of sets X, X,, ... as in Corollary 13.11, and just as in
the corollary, you are interested in the degree of nonconvexity of the per capita
Minkowski partial sums, forn large relative to k. If there is a particular
nonconvexity in some of the X, sets, but this nonconvexity doesn’t happen too



offen (think, only finitely ofen, although it can be more than this), then it will
shrink away in the per capita sets as n — oo. And ifit recurs frequently enough,
then by judicious choosing on either side of the nonconvexity, you will
(asymptotically) be able to get any convex combination you want. If you want,
say, a 2/3, 1/3 combination, then 2/3 ofthe time you pick points on one side of
the nonconvexity and 1/3 on the other The point is, the very condition that
says ““this nonconvexity won’t disappear of its own accord as n goes to
infinity,” namely that it reappears in a lot of the X, means that you will have

lots of opportunities to balance your selection on one side or the other.

Obviously, this is very rough intuition, especially if the balancing act
involves multiple dimensions and the nonconvexity is different for different
consumers. But this idea points us in the direction of a very powerful variation
on the aggregation-convexifies theory. I’ll describe this in terms of consumers
and their sets of net trades, but if you follow this description, it will be clear
how it generalizes.

The price-taking assumption is based on the intuition that each consumer is
small relative to the economy and has no impact on prices. Suppose that, rather
than having a finite number of consumers, we imagine that there are uncountably
many of them: For some measure space (7, 7), eacht € T is a “type” of
consumer, described by the type’s preferences _‘_-;—’ and endowment ¢. The
weight or proportion of consumers whose typet is drawn flom some
(measurable) subset 4 € T is given by the measure u(4), wherey is a
(nonnegative) measure on the space (7, T), such that x(7") = 1 (100% of the
agents are of a type drawn from the set 7).

For each type T, suppose that at some fixed price vector p (the commodity
space will remain RF for some finite k) the set of optimal net trades is given by
Z(p; t). Assumptions are made so that the correspondence ¢ = E: (p; 1) is well

behaved; think in terms of? being represented by a parameterized fanction u(x; £)
that is (say) jointly continuous inx and ¢, and ¢ — ¢ is continuous. (What
would Berge’s Theorem then tell you about ¢ = E (p; 1) for some fixed p?)

What is per capita aggregate demand? With finitely many agents, it is the
Minkowski sum, summing over agents (and, to make it per capita, divided by
the number of agents); the corresponding concept to a sum is an integral, and so
Aumann defines the integral over ¢ of the sets E: (p; t) as:



fT Z(p; )u(ddt) 15 the set {ng(pf idt) : ((p;t) € Z(p;t) foreach t, and

t— C(p;1) s well-enough behaved so the integral is well ﬂz‘ﬁﬁed} :

If for instance, we assume there is a uniform bound on the ¢, then there will be
a uniform bound on elements of the set E (p; ) (if prices p are strictly positive),

so “well-enough behaved” can be taken to be “measurable.” This so-called
Aumann integral of the correspondence, the parallel concept to the Minkowski
sum of a finite collection of sets, is the set of all integrals of measurable
selections from the correspondence. The punch line to all this setup is

Suppose that y is a nonatomic measure (that is, the weight or measure
of every singleton set {t} is 0). If t = E(p, 1) is “well-behaved, ">
the set | T g(p, Hu(dt) is convex, regardless of the convexity of the sets

)
Or, for nonatomic measures, meaning no single type ¢ has positive weight per

capita, aggregation convexifies. Not “convexifies in the limit” or “gets you

closer and closer to convexity,” but “convexifies, pé:n'od.”13

The intuition is, more or less, the intuition given earlier in the subsection:
Ify is nonatomic, then we can chop up 7 into as many pieces of any size
(measured by x) needed to balance out individual nonconvexities that occur with
positive u-measure. (Nonconvexities that appear in E(p; t) for a set ofyu-

measure 0 obviously are irrelevant to the integral.) Of course, this is just
intuition: This result, sometimes called Aumann$ Lemma or Aumann$
Theorem, is a deep result in mathematics. But owing to it, and for other
reasons, it provides the economic theorist who can handle the math a very
flicitous environment for doing economic theory and, in particular, general
equilibrium theory. The mathematics is at too high a level to be tackled in this
book, but (especially affer consuming the next two chapters), the reader who is
prepared to handle this level of math should look in the literature for economies
with a continuum of agents (that is, consumers and/or firms). The seminal
references are provided below.

Bibliographic Notes



As stated at the start of the chapter, aggregation is very important on a number
of grounds: in empirical studies, data are apt to come in aggregated form; it is
offen vastly simplifying to be able to assume that an economy consists of a
representative consumer and/or a representative firm; and to the extent that
aggregation helps justify assumptions like convexity or continuity, it justifies a
lot of theory. For these reasons, there is a very substantial literature on the
topic, and one that goes back a long way: The first aggregation result for
consumers comes from Antonelli (1886). This chapter has only scratched the
surface and, at that, the theoretical end of the surface.

For aggregation of consumers, I have relied very heavily on on Shafer and
Sonnenschein (1982), who provide some historical notes. The three seminal
papers for the S-M-D Theorem are Sonnenschein (1973), Mantel (1974), and
Debreu (1974). 1t is probably worth noting that there are other senses in which
one might talk about aggregation of consumers besides the adding up of their
demands or market demands; see Mas-Colell, Whinston, and Green (1995,
Section 4D).

What I call the Shapley-Folkman-Starr Theorem first appears in the
economic literature in Starr (1969). Starr credits Shapley and Folkman as the
originators of part b and a weaker version of part c¢; he himself provides the
definition of inner radius and sharpens the original Shapley-Folkman Theorem
to get part c.

The seminal papers on models with a continuum of agents are Aumann
(1964, 1965, 1966).

Problems

| *13.1. In the statement of Proposition 13.2, it is assumed that the preferences
of the various consumers are identical, homothetic, and convex. What happens i
we assume that they are (only) identical and homothetic?

m 13.2. The chapter argues (informally) that if every consumer’s demand d
takes the form tf"’-"(p )/‘)— 'l? )+ hl(p))/’ over some open region of prices and
income levels, then over that region, aggregate demand is independent of the

distribution of aggregate income and resembles the demand by a single
consumer.



(a) One part of the informal argument is that, assuming each individual demand
function satisfies the conditions of integrability, so does aggregate demand.
Show that this is so.

(b) Suppose that each consumer’s indirect utility finction V' takes the orm \/’(p,
}/‘): ah(p)+ ﬁ(p))/’ over an open domain of prices and income levels. Making all
the differentiability assumptions you care to, show that this implies that demand
functions take the form indicated. (Use Roy’s identity.) (This is called Gorman
form indirect utility.)

m 13.3. (This is purely a finger-exercise problem): Verify that the individual-
consumer demand information given in the example on the bottom of page 313
is consistent with utility maximization by each consumer.

m *13.4. Your task in this problem is to prove Proposition 13.3. If you fllow
the steps given here, it should not prove too hard.

(a) Consider the problem

H
h
max H(Jhyhja , sub Z <yy* >0,
h

h=1

where the scalars ,Bh are all strictly positive, the o are nonnegative and sum to
one, and y > 0. (Warning: The superscript /’s are all counters, so o/ means the
hth o, not a raised to the power 4. But the superscript o denotes raising the
quantity inside the parentheses to the power of the / th a, o/, Prove that the
unique optimal solution is yh =a y.)

(b) Now fix a price vector p and consider the problem of consumer 4, max ul(x)
subject to p - x < 1. Let the solution be J.. , and let uh(;ih) = /)’h. (If there are

multiple solutions, choose any one.) Describe the solution to max uh(x) subject
to p - x <y in terms Of..l" and the value of the solution in terms ofﬁh.



() Let x° be the solution of max U(x), subject to p - x <y, and let G h)h:1,m "
be the solution of

h
max ]_[ (uh’{:r:h' )® , subject to Z zh
h h

Let ﬁh = j " How does U(xo) caompare with

H[u #hye” 2 (13.2)

(d) Let j. =2 a”y;}:/’. How does U(xo) compare with U(;E:), and how does U(
E:) compare with

[] @witysty=" 2 (13.3)
h

(e) Compare the two quantities (13.2) and (13.3) using part a, then finish the
proof of the proposition.

m *13.5. Write out a corollary to Proposition 13.4 that transforms each piece
into a corresponding statement about consumer /’s excess demand and excess-
demand correspondence. Then prove Proposition 13.6.

| 13.6. While we will not supply a full proof of the S-M-D Theorem, here is a
piece of Debreu’s (1974) proof Let O denote the set of all prices p € Rk such
that ||p|| = 1, and for g > 0, let OF be the set {g € O ig; 2 Prali=1,

., k}. Suppose ¢ : OF — RF is a continuous function that satisfies Walras’
Law, or p - {((p) = 0 for all p € OF. Since OF is compact, we can produce
continuous fanctions & : QE — R, such that {(p)y+ ap)p >0 fr all p € QOF.



Indeed, we can take o to be a constant function, as long as the constant o >

max{-({(p)p;:p € OF, i=1, ..k}

Debreu’s proof involves finding & utility-maximizing agents whose excess
demand fanctions ¢* sum to ¢ (on OF). (We use homogeneity to extend to all
price vectors p such that p/||p|| € OF.) So fix {(*) and a(’) as in the previous
paragraph, and for 2 =1, ..., k, define

CRip) = (Cu(p) + apr) (™ — prp),

where &' = ©, 0,.., 0,1, 0, ..., 0), with the 1 in coordinate position /.
(Remember, A here runs from 1 to k; there is one consumer for each of the &
commodities. Indeed, if you examine d’(p), you’ll see that is it, by
construction, a positive scalar [depending on p] times a vector that is positive in
coordinate position # and negative in all other coordinate positions. So
consumer / sells all commodities except for z out of her endowment, and
purchases positive amounts of commodity # to consume in addition to her
endowment.)

(a) Prove that ), Ch(pF {p) Prall p € OF.
(b) Prove that p - éh(p) =0frh=l, .. kand Prall p € OF.

(c) Prove that each d’(p) satisfies the weak axiom of revealed preference: Ifp’ -
() <0, then p - J'p") > 0.

The “only” thing left to do is to prove that each " is the excess-demand
function for some utility-maximizing consumer (specified by her preferences and
endowment), for prices p € QF. Of course, the scare quotes around the word
only are sarcastic; this task is quite difficult. See Debreu (1974) or Geanakoplos
(1984) for details.

m *13.7. What is inner radius of the set {1, 2, 3, 4} in R'? What is the inner
radius ofthe set {(z, z,): z|, z, = 1, 2, 3, or 4} in R®



! Hence, ifone or more of the Z *(p) is empty, Z*(p) is defined to be empty.

2 It is implicit here that there is no maximizer ofp - z for z € Z ifand only if
one or more of the 72/ *(p) is empty, so that Z*(p), which is defined as the
Minkowski sum of the Z *(p), is empty. But if you do not see how this is
implied by what has been shown, you might prove this implicit “ifand only if’
directly.

3 We continue the use ofh = 1, ..., H to enumerate consumers, or
households, for the remainder of this volume. Compare with Chapter 8, where
we used # € H instead.

4 If you need a refresher on homothetic preferences, see Definition 2.17 on
page 44.

5 Shafer and Sonnenschein (1982) attribute this result to Eisenberg (1961) and
the form in which it is given here to Chipman and Moore (1979).

% See Proposition 2.19.

" we would have uh(x) <
0, and U is not well defined. We can finesse this difficulty by restricting the X'
in the definition of U to be those that satisfy uh()/’) >0, and in this sense the

assumption that x _‘,1—1’ 0 for all x is not needed. (Nonetheless, it seems

710 _‘,a—h x for some x, then in any homogeneous u

innocuous, and I add it to simplify matters.) But we certainly need that x _‘_-;—h 0
for some x, as if this is not true, then the definition of U, even if modified to
avoid negative values of u _‘_a—h, leads to U being the constant function 0.

8 Next chapter, she will also own shares in firms in the economy, and some
of her income will derive ffom her share of the profits the firms make. But for
current purposes, we’ll keep it simple; in the language of next chapter, we’re
looking here at a pure-trade economy, rather than an economy with production.

9 Aggregation can have other beneficial consequences besides convexification.

For instance, under the right conditions, even if individual demand or excess
. . . . r h . . ’

demand is multivalued (that is, 1fg (p) is not singleton for some p’),

aggregate (excess) demand, measured on a per capita basis for large numbers of



consumers, can be nearly a function in the sense that the radius of the set of
aggregate per capita (excess) demand at every price shrinks to zero. To show
this, one must show that, for each consumer, the prices where Eh(p) is not
singleton are rare and then argue that, as the number of consumers grows,
consumers will exhibit enough variation in their characteristics so that, at each
price p, the number of consumers having nonsingleton (excess) demand at p will
be small. I won’t supply details about this strand of the literature.

10 For the consumer, the level of income or endowment has to be “right” for
this to happen.

r you want to see the argument made more formally, finish Chapter 14 and
then consult the seminal paper on this topic, Starr (1969).

12 A sufficient condition is that there is an integrable function .: ‘T — RF

such that { € F(p; 1) implies that £ > (0.

13 In this description, I’ve identified each ¢ € T as a type of consumer, with
the notion that there may be more than one consumer of types. But by
assuming that x4 is nonatomic, I’ve assumed that the weight of type- ¢
consumers is infinitesimal relative to the whole population. Note, in this regard,
that in the definition of the Aumann integral, one {(p; ¢) is selected ffom E(p;
t) for each ¢; if there are multiple consumers of type ¢, they are all treated the
same in the selection.

A different interpretation is that each 1 € T is an individual consumer,
specified by her preferences and endowment. Then in the Aumann integral, we
are allowing ((p; t) to be selected from 2(;7; ) on a consumer-by-consumer
basis (up to measurability constraints); we could allow distinct types to have
positive weight, because we are allowing different copies of the same type to be
treated diferently in the Aumann integral. But in this interpretation, it probably
makes most sense to assume eachr € T has equal weight, which means
something like: 7= [0, 1] and x is Lebesgue measure on 7.



Chapter Fourteen




General Equilibrium

In this chapter and the next two, we move with a vengeance beyond the
behavior of a single consumer or a single firm, and beyond all the producers or
consumers within the market for a single good, as we study the behavior of an
entire economy, with multiple consumers and firms and with markets for all
commodities simultaneously. But we stick to the assumption that consumers
and firms are all price takers, basing their consumption and production decisions
on the hypothesis that they can buy and sell as much as they would like at the
going prices.

The topic is general equilibrium, and in many ways it is the climax of
microeconomics, if you are willing to limit attention to price-taking actors who
have access to common information, as we have done in this volume. Entire
books have been written about the theory of general equilibrium, and we’ll only
cover the basics here. In particular, in this chapter we cover:

« the basic definitions of an economy and a Walrasian equilibrium;
* basic properties of a Walrasian equilibrium; and
« the existence and other mathematical properties of Walrasian equilibria.

Chapter 15 concerns the efficiency of Walrasian-equilibrium allocations. And in
Chapter 16, we discuss how time and uncertainty can be accommodated within
the framework of general equilibrium.

14.1. Definitions

The first set of definitions concerns the context of our analysis, an economy. The
following pieces make up an economy:

* A finite integer k, the number of commodities. RF is called the commodity
space.

* A finite number F offirms. Firm f is characterized by a nonempty
production-possibility set 7 = Rk

+ A finite number H of consumers." Consumer / is characterized by:

« her consumption space X', which is a nonempty subset of RE



e herutility function u" X — R (We might specify instead the
consumer’s preference ordering };—h, but since we momentarily assume
that preferences are continuous, starting with utility functions is
without loss of generality. That said, I will feel free, when convenient,
to write x _‘,-;—h ¥ meaning 1"(x) > (), and so forth.)

 her (commodity) endowment, J e x

« her shareholdings, given by nonnegative numbers P4 forf=1, .. F
and =1, ..., H, and such that 3, s = 1 for each f

The symbol ¢ is used to denote an economy.

In some cases, we will work with an economy without firms: consumers
have endowments that they trade, but no transformation of commodities is
possible. In such cases, we say that the economy is a pure-exchange economy.

Various assumptions about pieces of this definition will be made at various
times in the chapter. But the following assumptions are nearly always made.

Assumption 14.1. Each consumer$ commodity space X" s Rk Each

h

consumer’s utility function u" is continuous. Each firm$ production-possibility

set Zis nonempty and closed.

To explain the “nearly” in “nearly always™ Unless explicitly contravened,
these assumptions hold throughout the chapter When we get to questions of
existence of equilibrium, we will (temporarily) assume that the consumption
spaceXh of consumer / is something smaller than Rk

The second definition (this one set out formally) concerns the object we are
studying, in the context of some economy &.

Definition 14.2. A Walrasian equilibrium for the economy ¢ is a price vector p
S _Rk, a consumption allocation {x}’; h =1, .., H}, and production plans
(s f=1,..., F}, such that

a. For each consumer h, X' € X" and solves the problem



maximize 4"(2), subject to T € XPandp-z<p-e +Z§”‘p

b. For each firm f, 7 € Z and solves the problem

maximize p - %, subjecttoz € Z7.

¢. Markets clear: Zh, j_‘h' = zh Hh + Z_;F :‘,f

(For a pure-exchange economy, a Walrasian equilibrium is a price vector p
and a consumption allocation such that requirement a holds, where the
summation in the right-hand side of the budget constraint is omitted, and
requirement ¢ holds, where the final summation over firms is omitted.)

Several remarks about this definition are in order:

Implicit in requirement a is the assumption that consumers are utility
maximizers. In requirement a, and more specifically in the problem
displayed there, which is the consumer’s utility-maximization problem, the
inequality p - o <p- '+ Z/-s/h P #is the consumer’s budget constraint.
For most of this book, budget constraints have taken the form p - x <y, for
some given income y. But in general equilibrium, the consumer’s level of
wealth or income is endogenized: The consumer comes endowed with a
vector of commodities ¢”; this endowment acquires value p - ¢" depending
on equilibrium prices. And the consumer obtains wealth from her
shareholdings in the firms: At the equilibrium prices p, the firm chooses a
production plan 2 (which is a netput vector just as in Chapter 9), so that p -
/is the net profit of the firm. Consumer / owns an s share in firm f, where
shares in each firm are normalized to sum across consumers to one. Hence,
consumer / receives her share sfhp -2 of firm f’s profit. In total, then, the
consumer’s wealth or income is the value of her endowment, plus the sum,
taken over all firms, ofher share in the profits of the firms.

Implicit in requirement b is the assumption that firms are profit maximizers.



*  We have assumed in our definition of an economy that each consumer’s
endowment ¢ lies in X, the consumer’s consumption space. This is done,
more or less, so we can be sure that the consumer’s utility-maximization
problem has a feasible solution; that is, there is some ¥ € X" that satisfies
the budget constraint. But if that is why the assumption is made, it isn’t
(yet) enough: The consumer is assumed to get her share s of the profitol
firm £, and we have not yet made assumptions to guarantee that firms make
nonnegative profit. If we assume 0 € Z for each f—so that a profit-
maximizing choice must give nonnegative profit—then we’re okay on this
score.

» The consumer’s budget constraint says <, which means that the consumer
can choose not to use all the purchasing power she receives from her
endowment and shares in the firms’ profits. And, in the market clearing
condition ¢, we have an inequality < Both of these inequalities are
sometimes made equations, in other treatments of general equilibrium. The
inequality in the budget constraint is not of much consequence as long as
consumers are locally insatiable; if a consumer is locally insatiable, we
know that she will spend her full budget. But if she could be locally
satiated, we aren’t forcing her to spend more than it takes to reach this
point.

The inequality (instead of an equality) in the market-clearing condition
has greater economic interest. Imagine that one of the goods is a “bad,”
meaning that it lowers the utility of consumers. A concrete example might
be some form of pollution. Ifa firm produces this bad commodity, and if we
have an equality in requirement c, then we are forcing some consumer (in a
Walrasian equilibrium) to consume this commodity. That, in itself is not
impossible to do: Note that we have not restricted prices to be nonnegative
(let alone strictly positive), and if this bad commodity has a negative price,
a consumer might be willing to “consume” it, as doing so loosens her
budget constraint, giving her more resources to purchase good
commodities.

But by having an inequality in ¢, we are allowing (as part of a Walrasian
equilibrium) this bad commodity to go unconsumed after everything is said
and done. In the case of noxious goods, then, the inequality in ¢ may be



inappropriate as a modeling assumption.

There is no bottom line to these considerations; no single way to model
goods that are “bads” is unambiguously best. I will proceed with the
definition of a Walrasian equilibrium given above; but if you consider
applying this sort of model to a situation with goods that are bad, you
should probably think carefully about this part ofthe definition.

* In requirements a and b, consumers and firms are price takers. They believe
they can buy and/or sell any amount of any of the commodities at the going
market price, without changing that price. The excuse for this assumption is
the usual rationale: It is probably approximately true, if consumers and firms
are both many and small. In any case, it is part of the story of general
equilibrium.

. When, in previous chapters, we discussed the consumer’s utility-
maximization problem and the firm’s profit-maximization problem, we
made assumptions guaranteeing that solutions exist, at least for strictly
positive prices. (Given that Z is closed and u" is continuous, those
assumptions guarantee that we can bound the set of feasible and relevant
consumption bundles/production plans.) But it is part of the definition of a
Walrasian equilibrium that prices are arranged so that consumers and firms
can solve their respective problems. If for instance, we specify an economy
E in which a firm has a constant-returns-to-scale technology, then prices in
any equilibrium must be such that the firm, at those prices, cannot make a
positive profit.

* In some treatments, the definition includes the condition p # 0. We don’t
insist on this, but see Proposition 14.4 upcoming.
To economize on notation, the following conventions are adopted:

X denotes the space of consumption allocation vectors, or
X = .l_.[f 2 "{h, with typical element x. Forx € X, write ¥ for i’s

part of the allocation.

Z denotes the space of production plans for all the firms, or



Z = H-‘:' i Ef, with typical element z. Forz € Z, we write E forf's
part of the overall production plan.

Therefore, a Walrasian equilibrium consists of a triple (p, x, z), where p gives
the equilibrium prices, x is the consumption allocation, and z is the production
plan.

In the next chapter, we will be in the business of comparing the
consumption allocation portion of Walrasian equilibria with other consumption
allocations that are feasible, using all the resources (endowments and firms’
technologies) this economy has to offer. So the following definition is made:

Definition 14.3. For a given economy ¢, the space of socially feasible
consumption allocations, denoted X * s defined as

X'=¢{xeX: z z Z 2 forsomez € Z

h=1 f=1

Note that, in this definition, we allow for the disposal of goods; that is, the
feasibility constraint is an inequality. This lines up with our use of an
inequality in part ¢ ofthe definition ofa Walrasian equilibrium.

14.2. Basic Properties of Walrasian Equilibria

Proposition 14.4.

a. If (p, x, 2) is a Walrasian equilibrium for some economy, then so is (Ap,
x, z) for all 2. > 0.

b. If consumer h is locally insatiable, then in any Walrasian equilibrium (p,
X, 2),p - o =p- '+ Zfs/hp - 2. (In other words, locally insatiable
consumers must satisfy Walras’ Law.)

c. If any consumer is globally insatiable, then every Walrasian-equilibrium
price vector p satisfies p # 0.



d. If any consumer has a nondecreasing and globally insatiable utility
Sfunction, or if any firm has a free-disposal technology, then every
Walrasian-equilibrium price vector p must satisfy p > 0.

e. If (p, x, 2) is a Walrasian equilibrium for some economy in which every
consumer is locally insatiable,

p- Z:xh =p- ZE“ +p- sz

h h I

(In words, the economy as a whole must satisfy Walras’ Law.) And if, in
addztzon > 0, then for each commodity

Zh h < Zh E'ih' - Z_;F Z-{ implies p; = 0. (In

words, for nonnegative prices and locally insatiable consumers, any good
in excess supply must have a price of zero.)

Proof. Part a is entirely straightforward. Part b fllows more or less
immediately ffom Proposition 3.1d; that proposition is stated in the context ofa
consumer with a set amount of income y, but the logic is unchanged. The first
half of part e results ffom summing up the equation in part b across all
consumers and noting that shares in each firm sum to one. Given this, rewrite
Walras’ Law (for the whole economy)

g- {Eh-‘-’h—zht‘ z_f z-'r} =10. EaChcomponentoj

the term inside the parentheses must be nonpositive by the market-clearing
condition. So ifp >0, for the dot product to be zero, each individual product in
the dot product must be zero. This immediately implies the second halfofe.

As for parts ¢ and d: Suppose that p is part of an equilibrium and consumer
h is globally insatiable. Were p = 0, the consumer would be unconstrained; she
could afford any bundle and, therefore, her utility-maximization problem would
have no solution. But in any Walrasian equilibrium, each consumer (and each
firm) must have a finite solution to her (its) problem. So p = 0 is not possible,
with one globally insatiable consumer.



Suppose p is part of a Walrasian equilibrium and p; < 0. Suppose consumer

h has nondecreasing and globally insatiable preferences. Let ¥ denote i’s
equilibrium consumption. Then by global insatiability, we can find another
bundle j:h that satisfies uh(ﬁh) > uloh). 1tp - j:h <p - A", then we have an
immediate contradiction to the assertion that X solves consumer h’s utility-
maximization problem at prices p, so we can assume that p - :I!h -p- o> 0;
define M: =p - :I:h -p- A, Let b be the unit vector in the commodity-i

direction; that is, » = (0, ..., 0, 1, 0, ..., 0) where the 1 is at component

position i. Then ;Eh + (M)\p)b = ;E:h, and therefore ui(j:h + (M/|p})b) >

W6, Butp [+ MApbI =p - 3+ p M) =p - G -M=p - A
contradicting the optimality of ¥ at prices p. And suppose p is part of a
Walrasian equilibrium, p; < 0, and firm /" has a free-disposal economy. Then
whatever production plan, A firm fis undertaking at the equilibrium, the plan z/
— b is fasible for it (this alternative plan involves the firm doing what it would
otherwise do, but buying and disposing of one more unit of commodity 7), and
this plan gives —p; more profit than does the plan <, contradicting the supposed

optimality of plan . -

Part d of the proposition gives conditions that ensure that the entire
(equilibrium) price vector is nonnegative. But the proof makes clear that we can
prove similar results one commodity at a time: p; > 0in any Walrasian

equilibrium if either (1) some consumers utility function is nondecreasing in
commodity i, and this consumer is globally insatiable, or (2) some firm can
freely dispose of commodity i.

In view of all the work we did earlier with strictly positive prices, we might
want conditions that establish that equilibrium prices are strictly positive. An
obvious result of this sort is the following:

Proposition 14.5 (Part 1). Suppose that for some consumer h, ul is strictly
increasing in the consumption of commodity i. Then p; > 0 in every Walrasian

equilibrium.



Proof. If (p, x, 2) is alleged to be a Walrasian equilibrium with p; < 0, then &
can increase her consumption of good i without violating her budget constraint.

S ox cannot possibly be utility maximizing for /s at the pricesp, a

contradiction.
|

The assumption that u" s strictly increasing in the consumption of
commodity i doesn’t apply to some commodities, of course. But the result of
Proposition 14.5 can be “extended.” Suppose, for instance, that we know
commodity i has strictly positive market value (that is, p; > 0 in any Walrasian

equilibrium), and some firm f, whatever else it is doing, can use a second
commodity, j, as incremental input to produce a strictly positive incremental
amount of . Formally,

Proposition 14.5 (Part 2). Suppose commodity i is ensured to have strictly
positive price in every Walrasian equilibrium—because, for instance, it
satisfies the conditions of part 1 of this proposition—and suppose for some

commodity j # i, there is a firm f such that, if z € 7. then there exists & €

7 such that #i-2;>0, #;,-2;<0, and % ,=z for all other ] than i or j.

Then P> 0 for every Walrasian-equilibrium price vector p.
The proofis leff for you as a simple exercise.

14.3. The Edgeworth Box

A number of insights into the nature of Walrasian equilibria can be gained by
looking at caricature examples. Some caricatures are parametric examples. A
selection is provided by Problems 14.2 through 14.5 at the end of this chapter;
you should work through these.

The Edgeworth Box is a different sort of caricature. It depicts a simple yet
still somewhat general case: pure exchange; two consumers; two goods. The
generality (in terms ofthe ability to shape the two consumers’ preferences, given
by their indiference curves) allows for a fairly rich variety of phenomena. But
with two consumers, two goods, and no firms, it allows for a visual
representation of what is going on.



The two consumers, Alice and Bob, are abbreviated # = 4 and B. Each has
her (h = A) or his (h = B) endowment, J € Ri. The social endowment,

denoted by e, is the sum ofthe two endowments, or e = A+ B

Follow along in Figure 14.1.

The picture begins in panels a and b, with indifference curve diagrams
depicting the preferences of, respectively, Alice and Bob. In Figure 14.1, and in
most Edgeworth Boxes you will see, indifference curves are drawn to depict
preferences that are strictly increasing and strictly convex. This isn’t necessary,
but it is common. Note in both panels the open circles representing the
endowments of the two consumers, as well as the filled-in circle at the social
endowment.

Then the box is constructed. Imagine rotating panel b by 180 degrees,
giving you panel c. And then superimpose panel ¢ on panel a, putting the origin
of panel ¢ on top of the social endowment of panel a, so that the social
endowment of ¢ lands on top of the origin of panel a. Panel d results. The
“box” in the name Edgeworth Box is the box formed in panel d by the two sets
of coordinate axes. Note that each point inside the box represents a way of
dividing the social endowment between Alice and Bob, where everything not
given to her is instead given to him.

Move on to Figure 14.2. I’ve depicted a more extreme version of panel d
here, more extreme because the initial endowment point gives more of good 2
and less of good 1 to Alice, and the reverse for Bob.

In panel a (now Figure 14.2), the shaded region shows all the ways to
divide the social endowment between Alice and Bob that leaves each at least as
well offas they are at the initial endowment and that wastes none of either good.
That is, these divisions are Pareto improvements on the initial endowment.
Pareto-efficient divisions of the social endowment are divisions where any
attempt to improve the utility of one party decreases the utility of the other;
assuming indiference curves are smooth and preferences are quasi-concave, these
would be points of tangency of two indifference curves, at least as long as the
point is interior to the box. Panel b shows the full range of Pareto-efficient
allocations as a heavy curve that runs fiom the origin in the southwest to the
other origin in the northeast. The heavier portion of this consists of points that
are Pareto efficient and that give each consumer as much utility as she or he gets



at her or his initial endowment; in the next chapter we’ll learn that these points
are called core allocations. (I’ve drawn the picture so that, except for the two
“origins,” the Pareto-efficient points lie inside the box. Depending on the slopes
of the indifference curves, Pareto-efficient allocations could lie along the
boundary of the box. See Problem 14.1.)
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Figure 14.1. Constructing the Edgeworth Box. For two consumers, Alice
and Bob, two goods, and pure exchange, begin with indiference curve
diagrams for the two. Their endowment of the goods are marked on their
indiflerence curve diagrams by the open circles, while the filled-in circle is
the social endowment. This gives panel a for Alice and panel b for Bob.
Then panel b is rotated 180 degrees (panel c¢) and superimposed on panel
a, with the social endowment on one set of coordinate axes placed on top
of'the origin in the other set of axes. Panel d results. Note that, in panel d,
each point inside the box formed by the two sets of axes represents a
division of the social endowment between Alice and Bob in a way that
wastes none of either good.
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(d) At these relative prices,
the demands by Alice and
Bob, beginning from their
endowments, are compatible
with market clearing. This is
a Walrasian equilibrium.



Figure 14.2. Efficiency and equilibrium in the Edgeworth Box

As for Walrasian equilibria: An equilibrium involves prices and price-driven
choices by each consumer. For a two-good economy, relative prices are given by
the slope of iso-cost lines, and the iso-cost line corresponding to a consumer’s
wealth is the iso-cost line through her initial endowment. A nice feature of an
Edgeworth Box is that the same point represents (on their respective coordinate
axes) the intial endowments of the two consumers, and a line through that
common initial endowment point simultaneously depicts the iso-cost (equals
initial wealth) line for both consumers. See, for instance, panel ¢, where the line
drawn represents (approximately) a price ratiop; :p, = 4 : 3. The

corresponding price-driven choice that Alice would make (marked with 4”) and
the price-driven choice that Bob would make (marked B*) are inconsistent with
market clearing; demand for good 1 is higher than and demand for good 2 is less
than the social endowment of these two goods. (Be sure you see this: Bob’s
demand for good 1 is measured as the horizontal distance ffom #is origin, in the
northeast comer, to the point B")) Panel d shows a Walrasian equilibrium: It is
necessarily (!) a Pareto-efficient point (as you’ll learn next chapter), where the
line through the endowment point and this point has a slope that matches the
slopes ofthe two indiference curves.

Before leaving the Edgeworth Box, let me be very clear on one point: The
box allows you to depict divisions of the social allocation that do not waste any
of the endowment. As long as one consumer or the other gets strictly higher
utility ffom consumption of each good, the Pareto-efficient divisions will all
have this no-waste property. But panel a of Figure 14.2 asserts that it shows
divisions that are Pareto improvements on the initial endowment, and that,
strictly speaking, isn’t quite right. There can be Pareto improvements that
waste some of either or both goods, as long as the waste isn’t too high and the
division of what is not wasted is pretty close to efficient.

14.4. Existence of Walrasian Equilibria

Does a given economy & possess a Walrasian equilibrium? Or, put somewhat
diflerently, what assumptions about the economy ¢ are sufficient to guarantee the
existence of at least one Walrasian equilibrium? Answers to this question
constitute a substantial literature; in his chapter on this topic in the Handbook



of Mathematical Economics (1982), Debreu gives over 340 references. Although
other methods for proving existence have been developed, the original methods
employed fixed-point theorems.? Appendix 8 discusses fixed-point theorems; we
will employ Kakutani’ Fixed-Point Theorem, which I reproduce from the
appendix here:

Proposition 14.6 (Kakutani’s Fixed-point Theorem). Suppose that X is a
nonempty, compact, convex subset of R" for some integer n. Suppose that F : X
= X is a correspondence from X to (subsets of) X that is upper semi-
continuous, and convex and nonempty valued. Then for somex € X, x € F (x).

The idea, then, is to identify a set X and a correspondence ¢ flom X to X for
which fixed points (x € X such that x € ¢(x)) are Walrasian equilibria; then
make enough assumptions about the economy ¢ so that a fixed-point theorem
such as Kakutani’s can be applied. This very general plan of attack admits a
wide variety of specific approaches, beginning with identification ofX; for
instance, some approaches take for X the space of nonnegative, nonzero prices,
normalized to sum to one (that is, X = {p € RFF 1 ;i p; = 1}); this space is

called the unit simplex in R, and is denoted by P. In other approaches, X is the
space  of  relative  weights put on  consumers (that is,

g {(ﬂh]f:: £ Rf_‘r : Eh. t'l'h — 1}), or the unit
simplex in R, but with a very diferent interpretation for the components of H.
Some approaches take for X' the product of these two spaces. Later in this
section, the approach employed takes for X the product of P, the unit simplex of
prices, and a compact set of excess demands (a compact subset oka).

A different dimension on which approaches to the question of existence vary
concerns the starting point for the analysis. Very roughly, papers separate into
two basic approaches. Some papers work directly with the consumers and firms
that make up the economy. Others begin with an excess-demand correspondence
or function. Of course, in the latter approach, consumers and, for economies with
production, firms are at least implicitly present; assumptions are made about the
excess-demand correspondence or function that are justified by appealing back to
assumptions about the consumers and firms.

I will start with a result of the first type, working directly with consumers



and firms, and Bllowing the approach of Arrow and Debreu (1954).3 This
presentation follows very closely some class notes of Vijay Krishna (2008).
This approach starts with definitions and a result of independent interest.

Generalizd games and their Nash equilibria

Definition 14.7. An n-player generalized game
.['_; i {-'_.1-{'- (--f L g }?_1 for a finite integer n consists of, for each | =
1, .., N,

a. a set of strategies or actions A,

b. a constraint correspondence (_-'f " Hm = _.;1?.,,: = _.élf, and
=

. e ; n =

¢ a utility function By : | | 0.1 -'_1f - R_

A Nash equilibrium for this generalized game is a strategy profile

{ﬂé };—‘ = H?—l _-q-f such that, for each 1 =1, ..., n,
d. ﬂ'é = C-}(I:(L;n:]ﬂ}?'f}and
e Hf{ﬂf.{ﬂ!;ﬂ.}?n_‘—rﬁf) over g & f-%{{f:;%jﬂi?f}.

Readers who know some (noncooperative) game theory will recognize that this
is nearly the same as the definition of a game in strategic form, but with one
complicating feature: In the usual definition of a strategic-form game, the set of
strategies or actions available to a player is independent of the choices of other
players. In this definition, the correspondence C formalizes the notion that what
is available to player can depend on the choices of the other players. Of course,
this formulation, taken literally, presents significant problems of timing in the
staging of the game: Ifthe choices available to each player are constrained by the
choices of all the other players, then how can choices be made? When are they
made?

Consider in this regard the following simple example of a generalized game:
There are two players; that is, n = 2. For/ =1, 2, 4;= {H, T}. C|(H) = {H},



C(T) = {T}, Co(H) = {T}, and Cy(T) = {H}. (The assignment of utilities is
irrelevant, as you will see momentarily.) The point of this example is probably
obvious, but in case not: If 2 chooses H, then the only choice available to 1 to
H. But if 1 chooses H, the only choice available to 2 is 7, which makes 7' the
only choice available to 1, which makes A the only choice available to 2. No
strategy profile, or assignment of strategies/actions to the two players, satisfies
the constraint that ; € C, (a,,) forl, m = 1, 2, [ # m. There is no fasible way
for the players to play this (generalized) game.

Our interest in this concept of a generalized game arises in the context of
Walrasian equilibrium, and it is worth noting explicitly that this conundrum
about how/when actions can be chosen if they are constrained by other actions
taken simultaneously is inherent in the concept of a Walrasian equilibrium.
Prices in an equilibrium presumably arise from the production and consumption
choices of firms and consumers. But firms cannot make profit-maximizing
choices without knowing the equilibrium prices, and consumers cannot make
utility-maximizing choices without knowing their budget sets, which require
equilibrium prices. Perhaps there is some mechanism that implements a
Walrasian equilibrium, but the equilibrium concept itself is something of a
reduced-form solution concept; it (perhaps) presumes the existence of some
mechanism that gets the economy to an equilibrium, and being an equilibrium
is a necessary condition for the outcome of this mechanism (again, perhaps), but
the concept in no way tells us what is the mechanism, how it works, or whether
in fact there is a mechanism.

Here, then, is the starting point for another branch of the literature of general
equilibrium, a branch that we (in this volume, at least) ignore entirely: How is a
general equilibrium to be implemented? We ignore this question not because it
is uninteresting; it is vitally interesting if we are to take the concept seriously.
But the tools needed to approach this question—at least the tools that are
needed in modemn approaches to this question—are tools from game theory,
tools that are only developed in Volume 2.

Notwithstanding this hole, we can still theorize about generalized games.
We will be using the notion of a strategy profile for all players except /, or
() rather a lot; I'll henceforth denote this by a_.

Proposition 14.8. Suppose that G is a generalized game for which



a. each A;is a nonempty, compact, convex subset okalfor some integer k),
b. each C; is a continuous, nonempty-valued, and convex-valued
correspondence, and
c. each u is jointly continuous in the full vector of actions and quasi-concave
in a; (for each fixed a_,).
Then G has a Nash equilibrium.

Remark. Since a Nash equilibrium strategy profile a” = @t - @ ;) must be
. . B ¥ " - . .
feasible in the sense that each a_f - (—-'f [a_uf] ), the assumptions in the

proposition (specifically, assumptions a and b) must imply that a fasible
strategy profile exists. In other words, assumptions a and b rule out the sort of
pathologies that the simple two-player example presents.

Proof. For each / = 1, ..., n, consider the parametric maximization problem
Maximize ug(ag; a_;), subjecttoa; € Cyla_y),

where the variable over which the maximum is being taken is a;, the strategies

employed by others, or a_; (drawn ffom the full product set Hﬂ -y _."-1 . })

is the parameter, and u; (a;; a_;') means u; evaluated at the argument (a;, ..., a,),

with @, in the /th coordinate slot, and the other coordinates given by the

“parameter” a_;. Let u}(a ) be the value of the maximized function
-

(properly, the supremum, until we prove that the supremum is achieved), and
let _—1E (ﬂ'—-f} be the set of maximizers. The assumptions made ensure that

we can apply Berge’s Theorem to this problem, concluding that
Ay — ”’E [:ﬂ'—uf) is a  continuous fanction and

d_y = ;1; (a i f:l is an upper semi-continuous correspondence. We

moreover know that _-l} (Q _¢ ) is nonempty, and the quasi-concavity ofu; in



a;and convexity of C; (a_)) ensure that _-IE (ﬂ —-f) is convex.

Piece together the various _—lé correspondences: Define

A f[_-"'lf = 12[_-"'15.
£=1 £=1

as follows. At the argument a = (a;, ..., a,), (@4, ..., a’) € A*(a) if, for each, /
a;, € ;4E(a71). I assert that this is an upper semi-continuous, nonempty-

valued, and convex-valued correspondence. This takes some staring, but in the
end is a fairly simple exercise in definitions, which I will leave to you as
Problem 14.6.

And now we can invoke Kakutani’s Fixed-Point Theorem. There exists
some H = ]__[:_1 __11 such thata” € A*(a*), which means that each

ﬂ; e _-15 (o ; } , which is precisely the definition ofa Nash equilibrium.
- ]

Existence of a Walrasian equilibrium for a very bounded economy

The next step in proving the existence of Walrasian equilibrium is to turn the
problem of finding an equilibrium into a generalized game. To do this, and to
apply Proposition 14.8, we need to satisfy the compactness assumptions of the
proposition, which will mean some very strong boundedness assumptions
imposed on the economy. In a final step (next subsection), we’ll show how to
relax these strong boundedness assumptions, requiring (only) weaker
boundedness assumptions.

We work with an economy ¢ in which there are H consumers and F firms,
and we create a generalized game with n = H+ F + 1 players. Each consumer is
a player, choosing her consumption bundle A" Each firm is a player, choosing
its production plan /. And the last player is a mythical auctioneer, who chooses
prices p fiom the unit simplex P.

Of course, there is no problem with the set P being compact. But we are



used to consumers who choose consumption bundles from Rk and firms that

choose production plans from sets 7 that are (at least) unbounded below. That’s
where the very bounded assumptions come in: We will look at economies
where consumer / selects a utility-maximizing consumption bundle from a
compact set X' < Rk, and where the production-possibility sets 7 are

compact. Otherwise, the assumptions made are reasonably standard:
Proposition 14.9. Suppose the economy ¢ satisfies the following conditions:
a. For each consumer h, X' is a compact and convex subset of Rk, s
interior to X", and _‘_-;—h is continuous and convex.
b. For each firm f, Zis compact and convex and contains the origin.
Then € has a Walrasian equilibrium.
Proof. As already noted, we prove this by creating a generalized game, the Nash

equilibria of which will be Walrasian equilibria.
The players in the game number 1 + H + F:

One player is a mythical auctioneer, who chooses a price p ffom the unit
simplex P, unconstrained by the choices of the other players. (The
auctioneer’s utility function will be given momentarily.)

e Each consumer is a player, with full strategy set X", but with choices
constrained by the choice of the auctioneer: Ifthe auctioneer is choosing p €

P, then consumer /4 must choose ¥  fiom  the  set
{;r eXh:pr< p-ﬁ"—zf sfhaf(p)} where o
the profit ﬁmctlon of firm f, or
.:FUJ = Max {p ; :t;_iF = Ef } The utility of

consumer /4 is u ()/“), where )/‘ is her choice of action.

. Each firm /" is a player, with strategy set Z Firm f* “s choice is
unconstrained by the choices of the other players, and its utility depends on
its own choice 2/ and the choice of the auctioneer p, given by p * .



» The auctioneer’s utility function, denoted by v, depends on all the choices
by consumers, firms, and its own choice of price, and is given by Wp, (,x}’),

(zf')) _ Eh p- Ih _ Ehp. I:»_.f'r b E_f p- ;:JF. That is, the

auctioneer’s objective is to choose p to maximize the value of the social net
trade, given the choices by the consumers and the firms.

To apply Proposition 14.8, we must check that all (unconstrained) action sets
are compact and convex subsets of some finite-dimensional Euclidean space, that
the constraint correspondences are continuous and convex valued, and that each
utility function is continuous in all the actions and quasi-concave in own action.
That each (unconstrained) action set is a compact and convex subset of a finite-
dimensional Euclidean space is by assumption. The constraint correspondences
for the firms and the auctioneer are trivial (they give no constraints beyond
choosing from Z or P'), so they are clearly continuous and convex valued. As
for the constraint correspondence of consumer /4, budget sets are clearly convex.
Continuity of each objective function in the full array of actions is quite clear,
and quasi-concavity of each objective function in that player’s own action is also
easy: It is assumed for consumers; the objective functions of firms and the
auctioneer are all linear in own actions.

What about continuity of the consumer’s constraint correspondence? Results
about the continuity of the budget set correspondence that we proved in earlier
chapters are insufficient on two grounds: Each consumer’s wealth is determined
endogenously, and (more problematically) we allow individual prices (but not
the full vector p) to be zero. So this takes some work: Fix consumer /4, and
temporarily, let
p-i+i<pe<ytp), o p-i<yt)-4, forallpe P (141
. That is, )/‘(p) is the budget constraint on consumer / in our generalized game;
when the auctioneer chooses p fiom P, consumer 2 must choose an ¥ such that
p- o Syh(p). Because 0 € Z for all firms f (by assumption), nf‘(p) >0 for all
p. Moreover, as a consequence of Berge’s Theorem (and the assumed
compactness of each Zf), we know that 7/ ‘(p) is continuous in p. Therefore, the
fanction yh(p) is continuous in p and satisfies )/’(p) >p - Prall p.

Upper semi-continuity of the constraint-on-# correspondence is easy.



Suppose {p,} is a sequence of prices fiom P approaching p, and __-rh is feasible
‘T

at p, for each n and lim,, Ii =¥ Feasibility ofl-i entails Ii € X' for all

n, so the compactness of X" implies that e xh Feasibility also entails p, -
__'rh' < yh(pn) for all n; use continuity ofthe dot product on the lefi-hand side and
T

of yh on the right-hand side to conclude that p - W< )/‘(p)A That’s upper semi-
continuity.

Lower semi-continuity is harder and is where the assumption that &' lies in
the interior of X is employed. Because of this, we know there is some }. e Xt

strictly less (less in all coordinates) than ', this implies that for some 6 > 0,
b, o p-i<it(p)-4 forallpeP (141

Now suppose that we are given an x that is budget feasible for 4 at some specific
pO; that is, x € X" and pO CX Syh(po). Suppose as well that we are given a
sequence of prices {p"} with limit p°. To show lower semi-continuity, we have
to produce a sequence {x"} with limit x and where X" is budget fasible at prices
p". (We must do this for all n beyond some initial index, of course.) To do
this, we look at convex combinations ofx and j. Since X" is convex, all such

p-i+i<pet<y

convex combinations are in X*. Fix (large) positive integer M. Since )/’(po) -°
x>0 and p" — p°, there exists N, sufficiently large so that, for all n > Ny,

") -pt o> —0/M, or ") + M =p" 2. (14.2)
Take the second inequality in display (14.1) for p” (recall that it holds for all p

€ P') and multiply by 1/(M + 1), and combine it with the second inequality in
(14.2) multiplied by M/M + 1). We have that, for all n > N,
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Now choose Ny, N,, ..., so that N; < N, < N3 < ... And for each n > Ny, let
M, be the largest integer so that n > Ny, and

W e W
B _j'llfn+1 . _ﬂlfn_‘_*l i

We know that p" - ¥* <)/'(p"). And we know that lim,, M, = o0; as soon as n

T

Fr

exceeds Ny, M, will exceed M. Hence lim x" = x, and we are done.

Therefore, we know that a Nash equilibrium to this generalized game exists,
which I’ll denote by (p, (), (/). The assertion, obviously, is that this Nash
equilibrium is a Walrasian equilibrium of the original economy. The profit-
maximization and utility-maximization conditions hold by design, once it is
noted that a profit-maximizing choice by firm f means that p - 7 = (p). But
what about market clearing?

We know that each consumer satisfies her budget constraint, or

p-z* *—_-’..]rj-vh'+z.qfhp-::f.
i

Summing this inequality over all the A, reversing the order of summations in
2 2 and recalling that shares sum to 1, this gives
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That is, the auctioneer’s optimized objective finction is less or equal to zero at
the Nash equilibrium. But suppose there was excess demand for some good;
that is, some

E:I.....R‘,zhi‘i Eh. E_f The

auctioneer can pick the price vector p that is 1 in coordinate i and zero in all
other coordinates to achieve a strictly positive value of her objective function.
Since we know that, at its optimum, the auctioneer gets a nonpositive objective

value, no good is in excess demand: Markets must clear.
|

Existence for a somewhat bounded economy

The very strong bounds imposed on the pieces of economy ¢ in Proposition
14.9 render it less than ideal. We can use the proposition as a step in proving a
result that is a good deal less restrictive (although it does add one strengthened
assumption on consumer preferences):

Proposition 14.10. Suppose the economy ¢ satisfies the following conditions:
a. For each consumer h, X" is a convex subset of Rk &' is interior 1o X",
and :::-h is continuous and semi-strictly convex.
b. For each firm f, Zis convex and contains the origin.

c. There exists a large (scalar) f such that: If [:}f ]?_1 is a selection of

production  plans, where 7 ez for each f such  that

S s +Ef +f >0, th 2F|| < [Froraiy

Then € has a Walrasian equilibrium.

Before giving the proof some comments are in order.



* The definition of semi-strictly convex preferences was given back in Chapter
2, but has not been used since, so here it is again: Preferences are semi-
strictly convex if they are convex and if, whenever x f::-h X, ax + (1 —ay'
j::_h x for alla € (0, 1). As a special case, if preferences have a concave
representation, they are semi-strictly convex.

* Condition c is the boundedness condition we impose. It says, more or less,
that production technologies are not such that an unbounded amount of any
good can be produced ffom the resources that can be provided by the
economy. This does not mean that firms cannot have constant-returns-to-
scale technologies. But if (say) firm f can produce unlimited amounts of an
output good as long as it can get unlimited amounts of some input good,
then it must not be possible for it to get unlimited amounts of that input
good. This precludes, for instance, the production equivalent of a “ perpetual
motion machine,” such as (for instance) where firm 1 can turn one unit good
1 into 1.1 units of good 2 on an unlimited scale, while firm 2 can turn one
unit of good 2 into 1.1 units of good 1. It also precludes the knife-edge case
where firm 1 can turn one unit of good 1 into one unit of good 2 (on any
scale), while firm 2 can do the reverse.

» [Ife is a pure-exchange economy, then condition ¢ holds automatically. So,
as long as the conditions in a are acceptable, this gives a pretty general prooi
of existence for pure-exchange economies.

Proof. The idea of the proof is to use the bound in ¢ to create an artificial
economy ¢ fom ¢ that satisfies the conditions of Proposition 14.9, use 14.9 to
i
extract a Walrasian equilibrium for &, and then prove that this is also an
i

equilibrium for .
L e tyy— -h = e .
a=|>,¢e"|,andlety=a+F3+1

Repeated applications of the triangle inequality tell us that for any selection of
production plans (z/) such that 2 & +

Z_;F :‘,'-iF = Dr” zh» F:h' T E_;F ‘,f” < 7y, and also 1] | <

f <y for each f.



Create f‘ from ¢ as follows: For each consumer 4, limit her consumption

space ‘?’h to be {.l. e Xh - ||;|. ” < r\} For each firm f,
limit its production possibilities set

Z_;F to be _{2 e Z_f '""r} The preferences of the

consumers and their endowments are unchanged. (It might be worth observing
that the definition ofy ensures that each " is still in the interior of ?‘h.)
-

Then ;_q satisfies the conditions of Proposition 14.9, and there exists a
Walrasian Lezluilibrium @, (%), () fr &. 1assert that (p, (), () is in fact a
Walrasian equilibrium for the original e;(;nomy ES

* Market clearing (for the economy ¢) of course holds, since it holds in Lf'

» Take any consumer 4. Suppose that at prices p, with income given by p - J
+ Zfsfhp - 7/, some affordable bundle T € X" is strictly better than X',
Since X" is convex and preferences ';;_h are semi-strictly convex, this implies
that for all a € [0, 1), ad + (a 7;);3: :::—h ¥". Of course, all these convex
combinations of ¥ and j. are affordable for / (at the equilibrium prices and

her equlhbnum wealth).  But  since  each 2 > 0 and

: K o F we  know  that

POIVE :ZM, +3 52

ph h ~F: n | <

P P ; hance .
0 < a% B et +3 I 1<y
Therefore, for some a < 1 (but, presumably, close to 1), ad + 1- a)f: €
?h which would contradict the optimality for & of ! among all budget-
feasible bundles from ?‘ No such = - can exist, and ¥ is best for & ffom

all budget-feasible bundles in her original (unconstrained) consumption
space.

*  Take any firm, say f. Suppose that, at prices p, there is some production
plan # inf’s unconstrained production-possibility set 7 that gives higher



profit than does . Since Zis convex, all convex combinations az’ + (1-a)
i: are in Z/, and (since profit is linear), all convex combinations for a < 1
must give greater profit than does 2. But since
s Foeh T o < Y el + Ef = F. we know that ||| <
<y, which implies that for some a < 1 (but, perhaps, close to 1),
i Z‘;'F iy {I — a) = Ef, which would be a contradiction to 2/

-~

being profit maximizing (at prices p) in Zf No such & can exist; /s
profit maximizing at prices p in all of. 7.

This means that (p, (xh), (zf)) is a Walrasian equilibrium for .

Existence using aggregate ex cess demand

The alternative approach to beginning with consumers and firms is to work with
an aggregate excess-demand correspondence p = E (p) and seek a result along
the lines, If p = E (p) satisfies ... [fill in some conditions], then there exists
at least one p and { € E(p) such that { <0.

To be clear, this correspondence is meant to aggregate not only the excess
demands of consumers in the economy, but also the netput decisions of
individual firms. Specifically, if Z *(p) represents the set of optimal (price-
maximizing) net-puts for firm f at prices p, and Eh(p) is the set of optimal
(utility-maximizing) excess demands by consumer # (for some given and fixed

endowment vector e"), and if we have finitely many firms and finitely many
consumers, then

Z(p) = Z Zhp) —Z Z5*(p),
k f

where we are taking a Minkowski “sum” of the sets. The scare quotes around
“sum” are there because the sign is reversed for netput vectors by firms; we want
demands to be positive and supplies to be negative, which means positive signs



on inputs and negative signs on outputs, the reverse of what we did in Chapter
other words, S ﬁ_’ ®) means that

9. In
M h _ .h . =_f .
L = Eh‘,}’.‘ Zh i E_.’ w4 for a selection of ¥ fiom

the set of optimal demands for and 7' fom the set of optimal netputs for f,
both at prices p.

This is only one possibility of the genesis ofz. We might alternatively
imagine a pure-trade economy with a continuum of consumers, and then (if you
read the last parts of last chapter) z-_": (p) is the Aumann integral of the individual
consumers’ excess-demand sets at p. Or we might imagine that firms choose
their netputs by some criterion other than maximizing profit. The point is, we
start the formal developments withp = Z (p), making assumptions about

this correspondence. For instance, it is typical to assume that
* Z (p) is homogeneous of degree 0 in p, or E:(p) = Z(}.p) forA >0,
c p— E: (p) is upper semi-continuous,
e Walras’ Law: If{ € E(p), then p - {=0, and
* Each ,Z?: (p) is a convex subset of RK#

The justification for these assumptions (and others that we will make)
derives flom those in-the-background consumers and firms. For instance, with
finitely many consumers and firms, firms with closed and convex production-
possibility sets that satisfy the recession-cone property, and consumers with
convex, continuous, and locally insatiable preferences, you have all the results
needed to justify these four assumptions for strictly positive prices. Or,
alternatively, suppose that we have instead a pure-trade economy populated by
consumers with continuous and locally insatiable but not necessarily convex
preferences. And suppose we have a continuum of such consumers, the
distribution of which is given by a non-atomic measure. Then (if you read
through to the end oflast chapter) you know that Aumann’s Lemma guarantees
the convexity of each E (p), even if the various Eh(p) are not necessarily
convex.

Specific results add various boundedness assumptions to the list above (and,



as we’ll see, may relax Walras’ Law), the justification for which also
(sometimes implicitly) is played back to the in-the-background consumers and
firms. And, very importantly, specific results difér concerning the assumed
domain of E: ; for which prices are aggregate excess-demand sets well defined?

If for instance, one wants to have in the background firms with constant-returns-
to-scale technologies, aggregate excess demand may be undefined for some
prices; namely those for which the firms can make strictly positive, and hence
infinite, profit. I won’t try to chase those variations down here (the Handbook
chapter by Debreu [1982] is a good starting point). Instead, I’ll assume that E
(*) is defined at least for all strictly positive prices p. (So, to the extent that ’'m
imagining firms making up a portion of aggregate excess-demand, their
production-possibility sets must satisfy the recession-cone property.)

But there is still the question: Is E: defined only for strictly positive prices,
or does it extend to all nonnegative prices? Even in a pure-exchange economy,
excess demand for prices some of whose coordinate values are zero is
problematic; if consumers’ (or even one consumer’s) preferences are never
satiated in that good, they will demand infinite amounts of the good. If
however, we are willing to assume (in the background) that every consumer is
eventually fully satiated in every good, and if firms cannot make use of (and so
will not demand) infinite amounts of any input good, then it could be
reasonable to suppose that g is defined for all nonnegative p. However, in such

cases, we lose some of the motivation for Walras’ Law, which depends on local
insatiability. The following result is classic:

Proposition 14.11 (The Debreu-Gale-Kuhn-Nikaido Lemma). Let P be the
unit simplex in RK, that is

P = {p = RR p= >0, Ei_l p; = 1} Suppose that Z is a
correspondence with domam P and range R (which is to say E(p) S R* for
each p). Suppose that p = g (p) is upper semi-continuous, nonempty valued,
and convex valued, that p - { < 0 for all { € 2(;7), and that there is a
uniform bound on all the sets E(p) Then there exists p € P and { € Z(p)
such that  <0.



Remarks. The obviously “difficult” additional assumption here is that the z@)

are uniformly bounded. This would seemingly go best with assumptions about
(eventual) global satiation in each good separately—that is, past a certain level,
each consumer (or firm) has no use for more of each good. Since this could
conceivably play havoc with Walras® Law, the lemma supposes only that p - {
<0 frf € ,Z?: (p), which (for those in-the-background actors) amounts to an
assumption that consumers obey their budget constraints. Note that = is
defined in this proposition only for prices p in the unit simplex; hence no
mention of homogeneity is needed.

One can imagine using this result as part of the proof of less restrictive
results, where one bounds a given economy in something like the way we did
earlier this section and then proves that the bound can be removed. Hence its
name is the D-G-K-N Lemma. The multiple names attached to this result are
not because the four did this collaboratively, but instead because they came up
with proofs virtually contemporaneously and independently. In fact, the result as
stated here is a simplified version of the full result, which concerns bounded _E:

whose domain is a closed and convex cone of prices.
The ingenious proofthat ©llows is due to Debreu (1956).

Proof. Let B be a compact and convex subset of RX such that 5 (p) & B for all

p € P. The existence ofB is guaranteed by the uniform boundedness
assumption. Define a correspondence @ on the domain P x B as follows:

0.0 ={('.): '€ 2(), pe P.pi > Oonlyif ¢ > G forall j=1,... .k},

The { part of the definition is straightforward, but think for a minute what is
going on with the p’ part: At the argument (p, {), the price portion of vectors in
D(p, ) are prices that only put positive weight on the largest components of {
This should remind you of the auctioneer in the generalized game: @, like that
auctioneer, is “picking” prices p’ that maximize the market value of the vector
that is playing the role of excess demand. (This proof strategy can be found in a
lot of existence proofs.)

I assert that @(p, ) is nonempty and convex and that (p, {) = @(p, ) is



upper semi-continuous. Nonemptiness is obvious. For convexity, note that
D(p, {)is the product of two sets, {p" € P : p’;> 0 implies ¢; 2(1- for all j} and
E—’: (p). That _E: (p) is convex is an assumption of the proposition; to show that

the other set is convex, simply note that ifp’ and p” are both in the set, then
they only put positive weight on the largest components of(, and so
(obviously) does any convex combination of them. And the product of two
convex sets is obviously convex.

Now suppose that (p", ¢") — (@°, (%) and, for each n, we have a (jj", C”)
S h s A
0", &) where (", "
continuity ofg, it is immediate that (_,.0 € E(po). And suppose that, for

) — (p"o, I:O). Because of the upper semi-

some i, ﬁu > 0. Then for all large n, j}: > 0; hence .,::“ = C; for all j,
and hence ,:TL:I = L:_? for all j. Together these imply that (ﬁo, I:O) € o@p°,

40), which is upper semi-continuity.

This means that @ satisfies all the required conditions to apply Kakutani’s
Fixed-Point Theorem. (The domain P x B is clearly compact.) Therefore, there
is some (p, {) such that (p, ) € D(p, {). Of course, this means that { € 5 ®),
and also that p; > 0 only if¢; Eq¢ for all j. Were it the case that ; > 0 for some
i, then p would only charge (be strictly positive for) j s such that P> 0, which
would imply p - {> 0. This contradicts p - { <0 forall { € ,E:(p)’ and so { <

0, which is what we needed to show. -

The obvious weakness in this result is in the assumption that g is defined

(in an upper semi-continuous and uniformly bounded manner) out to the
boundary of the price simplex. If we imagine that goods are always desirable, it
is more likely that demand for a given good, and hence excess demand, grows
without bound as the relative price of that good approaches zero (and assuming
that the consumers’ incomes are not simultaneously vanishing) and is undefined
when the relative price of the good is zero. To accommodate this sort of
situation, we have the ©llowing result.



Proposition 14.12.% Let P° be the open unit simplex in RX; that is, P° = P N
Rk . Suppose _‘g is a correspondence from P° to RF that is nonempty and

convex valued, upper semi-continuous, satisfies Walras’Law (p - {= 0 for all
e E(p)), is uniformly bounded below, and satisfies the following boundary

condition: If {p"} is a sequence of strictly positive prices from P° that
approaches p° that is not strictly positive, and if ' € ,.5 (") for each n, then
lim, ||{"|| = oo. Then there exists p € P° such that 0 € Z(p).

Remarks. As in Proposition 14.11, we are restricting attention to Z defined on

prices normalized to lie in the unit simplex, so we don’t need to mention
homogeneity. The assumptions that E (p) is nonempty and convex, that p =

E(p) is upper semi-continuous, and that Walras’ Law holds, should all seem

standard at this point.

The uniform lower bound is easiest to justify if we think of this excess-
demand correspondence emerging from a pure-exchange economys; in that case, a
lower bound on excess demand is provided by the sum of all the endowment
vectors. With firms around, it is a little harder to justify; the sort of no-
perpetual-motion-machines assumption we encountered in Proposition 14.10 is
required.

The boundary condition deserves the most attention. Suppose that we have
a sequence of prices {p"} fiom P° converging to some p° € P°. Ofcourse, p° is
nonnegative, and since the sum ofits components is 1, there are j such that E_j_:;

> 0. If we imagine that at least some consumers have strictly positive
endowments of such goods j, then those consumers will have income or wealth
that, along the sequence, is strictly bounded away ffom zero. And then, the idea
is, as the price of some good i goes to zero, these consumers will demand
increasing, and unboundedly increasing, amounts of good i. Of course, this is
just the underlying idea; to be turned into a result requires assumptions on the
preferences of the consumers. But it is the sort of logic that makes the boundary
assumption reasonable. It should be observed that in saying that ||"|| — oo, it
is only the components of {" whose prices are going to zero that can diverge;
Walras’ Law implies that the excess demand for any good whose price is



bounded away ffom zero must be bounded above (by a bound that depends on
the consumer’s overall endowment size and the amount by which the price of
the good is bounded away ffom zero).

Finally, note that the conclusion is 0 € 3 (p) for some p. Before we said
that our general goal was to find ap and { € Z_’(p) such that { < 0. But here

the price p must be strictly positive, and if Walras’ Law holds—if p - {= 0 for
strictly positive p—then <0 implies {= 0.

Proof.® We mimic Debreu’s proof of the D-G-K-N Lemma. To begin, let Pt
for £ > 0 be the unit price simplex in RF but with each price constrained to be
at least ¢; thatis, PE = {p € P:p;>¢ foralli=1, .., k}. Let B < 0 be the
uniform lower bound on each component of € z_Tr (p); 1 assert that each
component of{ for { € E(p), p € PE, is bounded above by BE = B/ .
This follows ffom Walras” Law: Suppose { € Z_’(p) frp € PE. We know
that p - {'= 0. The dot product is Y, p;, which we can separate into

Z p; max{0, (;} + Z p; min{0, (;}.

The entire sum must be zero, the second term is bounded below by B, and each
p; > so if{; >0 it must be that {; <-B/f.

Next, for every ¢ > 0 (and ¢ < 1/k), construct a correspondence @t on the
domain PE x {¢ € RF : B <(, < BE} as Bllows: (p!, {) € dE(p, ¢ ify €
E’(p), p' € PE, and p'i= ¢ if, rsome; #1, G>¢G In other words, given a
pair (p, ), PE(p, O is the product of (1) the set of all prices in PE that put
weight greater than only on the ““largest” components of { and (2) the set E(p)‘
Note that since p € PE, every (' € g(p) satisfies B < {'; < BE, so oE(p, )
is a subset of the domain of the correspondence. The domain is clearly compact.
By the arguments given in the proof of the D-G-K-N Lemma, @£ (p, () is
convex and nonempty for every (p, ¢), and (p, {) = ®E(p, {) is upper semi-
continuous. Hence for every ¢ € (0, 1/k), we can find at least one fixed point of



the correspondence; select one such fixed point for each ¢ = 1/n (n > k), calling
the fixed point (p”, ¢"). Note well, this means that " € F(p") and j'J,’;" =1/n
if for somej # i, .;’_;-' = '-.:

The sequence of prices {p”"} lies in P, which is compact, so looking along a
subsequence ifnecessary, we can assume that lim,, p” exists and equals some P’
I assert that p° must be in the interior of P. Suppose it is not: By the boundary
condition, we know that lim, ||("|]] =oo. Since the components of(" are

bounded below, this means that as n — oo, some components of (" are growing
(positively) without bound. Let &™ = = 1Max;-1 k L\ﬂn, of course,

lim, z' =oo. LetI" = {i e =7"; we know that

ZiEf“ f-];_: >1-— 'I;.II.-' T, zince p_? must equal 1/ forj & I".
But then p” - {" > B + (1 — k/n)z,, which for large enough n will be strictly

positive, contradicting Walras’ Law.
Hence, p is interior to P. Letting r = min; 0 this implies that p" € P2
2

for all sufficiently large n; hence there is a uniform upper bound on the (™.
Looking along a subsequence as necessary, we know that ¢ converges to ¢,
and by upper semi-continuity of 2‘: on the interior of P (0 € E_’ (po).
Moreover, the argument used in the proof ofthe D-G-K-N Lemma shows that all

the coordinate values of| 40 must be the same, so by Walras” Law, they all must

be 0.
]

To close this section, let me reiterate: There are many, many existence-of
Walrasian-equilibrium results in the literature. There are many that use
variations on fixed-point arguments as here, but with diferent (and, usually,
weaker) assumptions, and then there are other methodologies that have been
employed. We’ve barely scratched the surface.

14.5. The Set of Equilibria for a Fixed Economy



Having proved (under conditions) that an economy has at least one Walrasian
equilibrium, it is natural to wonder, How many? Economists brought up on the
classic picture of supply equals demand (Figure 1.1) are fond of the definite
character of the “answer™; there is one and only one price at which the rising
(and continuous) supply curve hits the falling (and continuous) demand curve,
and hence the theory makes a very definite prediction about the outcome.
Moreover, in many cases one is able to engage in fluitful comparative statics
exercises concerning the single equilibrium; as this parameter rises, equilibrium
price rises (or falls). Obviously, such results are helped by uniqueness of the
equilibrium.7 Is the set of Walrasian equilibria for a given economy well
behaved in this sense?

The literature provides three sorts of results. The first sort of result provides
conditions under which there is, for the given economy, a unique Walrasian
equilibrium. Following the analogy with Figure 1.1, the conditions are not hard
to envision conceptually: We want conditions that guarantee that, as the relative
price of any good rises, its excess demand falls. Formalizing this conceptual
vision is not trivial, but it can certainly be done; see, for instance, Mas-Colell,
Whinston, and Green (1995, Section 17F).

On the other hand, it is easy to give examples of economies that admit
multiple equilibria. Consider, for instance, the following caricature exchange
economy faturing two goods and two consumers, Alice and Bob. Alice and
Bob have identical preferences, given by the utility function u((x;, x,)) =

min{x;, x,}. Alice is endowed with one unit of good 1 and none of good 2;
Bob with one unit of good 2 and none of good 1. Then for any price vector (p,,
p,) € P (that is, normalized so that p; + p, = 1), Alice has initial wealth of p,
and so will choose the bundle (p;, p;), while Bob has initial wealth p, and
chooses (p,, p,). (If this isn’t obvious to you, write down Alice’s problem,
noting that at her optimal bundle, x; =x,. Or draw the Edgeworth Box
representing this economy, which may be a good idea in any case. If p or p, is

zero, the choices indicated are not the only utility-maximizing choices for one of
the two, but they are utility-maximizing choices.) Of course, these choices are
market clearing; every price vector is a Walrasian-equilibrium price vector for
this economy.



So what, ifanything, can be said about the set of Walrasian equilibria? For
one thing, the set of equilibria is (under mild conditions) closed. I will not state
this as a formal proposition, but instead indicate two ways to interpret and
prove the result. The first and easiest way is if we take as primitive an excess-
demand function ¢ (defined, say, on the unit simplex P of prices) that is
continuous among its other properties. The set of equilibrium prices (in P) is
then {p € P :{(p) < 0}, which is certainly closed if{ is continuous. Or
suppose we use the sort of ““ full” formulation provided at the start of the chapter
and in Definition 14.2. Suppose that, for a fixed economy &, we have a sequence

of Walrasian equilibria { (f-"r! ; {in]. {:31{)}_: f e [ F }

(where the subscript n denotes the index of the sequence) that converges to a
price, consumpti}zn allocation, and set of production plans

, A .- . As long as enough assumptions are made so that each
(po, (5, (g ) ) As tone 2 cnoueh assump

consumer’s Marshallian demand correspondence and each firm’s optimal netput
correspondences ar(}_ upper semi-continuous, it is clear that the limiting

; Jh - will satisfy the conditions of being a Walrasian
(po, (28), (23)) ¥ :

equilibrium.

But that’s pretty much all one can say (beyond the results in Propositions
14.4 and 14.5). Mas-Colell (1977) proves the following remarkable result. As
always (in this chapter) P denotes the unit simplex in RE.

Proposition 14.13 (Mas-Colell’s Theorem). Ler O be any nonempty and
closed subset of P that lies entirely within the interior of P Then there exists a
pure-exchange economy ¢ (for k commodities), with consumers that have
continuous, strictly convex, and monotone preferences, such that Q is the set of
Walrasian-equilibrium prices for ¢ (restricted to P).

The remarkable thing is, the proposition says that this is true for any closed
subset of P that stays away from the boundaries of P. Ifk = 3, then P is a
triangle, and we can draw pictures. For instance, suppose we take for Q the set
shown in Figure 14.3; that is, points that are “filled in” within the simplex.
This is a closed set within the interior of P, so Mas-Colell’s Theorem tells us
that there exists an economy, meaning a collection of well-behaved consumers



with endowments, for whom the Walrasian-equilibrium price vectors in P spell
out the names of three fathers of modern general equilibrium theory.

Figure 14.3. Equilibrium prices. Mas-Colell’s Theorem (Proposition
14.13) tells us that we can find an exchange economy for which the set of
Walrasian-equilibrium prices spell out the names of the three fathers of
modern general equilibrium theory. The example is for £ = 3, and we are
looking (only) at the projection of equilibrium prices onto the unit

simplex in R>; that is, on price vectors p such that EJ aye —
p p p i P = 1



This result is, in fact, an extension of the Sonnenschein-Mantel-Debreu
Theorem flom last chapter The key is to find a continuous excess-demand
function (on P) that satisfies p - {(p) = 0 for all p and whose zeros coincide with
the set Q. In fact, this isn’t quite enough; even using Debreu’s version of the S-
M-D Theorem, we have to worry about what happens near the boundary, where
one price or another goes to zero. But Mas-Colell (1977) sharpens the S-M-D
Theorem sufficiently to deal with this. (If you didn’t fully appreciate the S-M-D
Theorem before, perhaps this will convince you of its power) See Problem
14.10 for the easier part of the proof of this result.

So, if we allow for any economy, very little can be said in the way of
restrictions on the set of Walrasian-equilibrium prices. The third sort of result
found in the literature then asks, What can be said about the set of Walrasian
equilibria (and their prices) for “most” economies. Short of showing that there
is a unique equilibrium, which takes fairly strong assumptions on the
underlying economy, what one hopes (and strives) for is a result that “most”
economies have a finite number of (necessarily isolated) equilibria. Using the
methods of differential geometry and topology, such results are accessible; T will
not pursue them here but strongly recommend the excellent introduction to this
topic in Mas-Colell, Whinston, and Green (1995, Section 17D).

14.6. The Equilibrium Correspondence

An economy ¢ will, in general, have a nonempty set of Walrasian equilibria.
Suppose we think of economies being drawn from some topological space of
economies; then we might be interested in the Walrasian-equilibrium
correspondence, the cotrespondence ffom the space of economies to the space of
prices xallocations xproduction plans that, for each economy, identifies the
Walrasian equilibria of that economy.

To illustrate how this sort of thing might proceed and to give the simplest
result available, fix a finite collection of consumers 7 = 1, ...,H, specified by
their continuous and complete and transitive preferences ';—h or, equivalently,

their continuous utility functions u", with domain (consumption sets)Xh =

Rh And fix a finite collection of firms /' = 1, ..., F, specified by their

nonempty and closed production-possibility sets 7 < RCEaf you are
wondering “What about consumer endowments?,” this is what varies



parametrically: Fore € (Rk)H, economy &(e) is the economy made up of the

fixed consumers and firms, where the vector of endowments for the consumers is
given by e. For each economy, &(e), we let W(e(e)) be the set of Walrasian
equilibria  for e(e), where each equilibrium is given by a price vector,
consumption allocation, and array of production plans.

Proposition 14.14. Suppose that, for every e, Walrasian-equilibrium prices for
e(e) must be nonzero and nonnegative. The correspondence e — W(e(e)) is
upper semi-continuous.

This is left to you to do as Problem 14.11.

Bibliographic Notes

Formulations of general equilibrium go back to (at least) the work of Walras.
Questions of existence were “settled” by counting equations and unknowns and
noting that they matched, affer the redundant equations are removed; that is,
unrigorously. The modern formulation and (rigorous) existence results date ffom
the early 1950s. As noted already, the two pioneering papers devoted to
existence are Arrow and Debreu (1954) and McKenzie (1954). There are many
book-length treatments of the subject, which typically include material we will
cover in the next two chapters: Debreu (1959) is truly classic, and I first learned
the subject from Arrow and Hahn (1971), which, sadly, seems to be out of print.
Among other things, Arrow and Hahn begin with a “Historical Introduction”
chapter that sets the subject in its broad historical context. Scarf(1973) presents
a computational approach, using methods of bilinear complementarity. I have
skimped on mathematical considerations beyond existence, in part because it is
pointless to try to compete with the wonderful exposition on the topic found in
Mas-Colell, Whinston, and Green (1995); the discussion of Mas-Colell’s
Theorem here is lified fom Shafer and Sonnenschein (1982).

Problems
m *14.1. (a) Draw an Edgeworth Box in which both consumers have strictly

increasing and strictly convex preferences (strictly quasi-concave utility) and
where the Pareto-efficient divisions of the social endowment lie entirely along



the boundary of the box. Is it possible to have a case (with strictly increasing
and strictly convex preferences) where the southeast corner of the box (all of
good 1 is given to consumer 1, and all of good 2 is given to consumer 2) is
Pareto efficient, but other Pareto-efficient points involve each consumer getting a
strictly positive amount of both goods?

(b) Suppose we have a two-consumer, two-good, pure-exchange economy in
which consumer 1 only wants to consume good 1 (and she wants as much of
that as she can get), and consumer 2 only wants to consume good 2. Their
initial endowments are identical: Each has 10 units of good 1 and 10 units of
good 2. What does the Edgeworth Box for this pathological economy look
like? Which allocations lie in the core, and what are the Walrasian equilibria?

m *14.2. Consider the fllowing two-person, two-commodity, pure-exchange
economy. Consumer 1, Alice, has utility finction uA(xl, X,) = 0.4In(x;) +
0.6In(x,). Consumer 2, Bob, has utility function uB(xl, X,) = 0.5In(x;) +
0.5In(x,). Alice’s endowment is [,r_.ffl . ﬂéd} — (1[]‘ ‘]_D}, while Bob’s

endowment is (rIE ’ FZ"B] = (5, 10)- What arc the Walrasian equilibria

of'this economy?

m *14.3. Consider the following economy: There are three goods, two
consumers, and two firms. Good 3 is used as an input to the production
process, and provides no utility of consumption. Firm 1, which is owned
entirely by Alice, has a technology that allows good 3 to be made into good 1,
according to the simple linear technology x; < 3x;. That is, if firm 1 uses x3
units of the input good, it can make up to 3x; units of the first consumption
good. Firm 2, owned entirely by Bob, uses the third good to make the second
consumption good, and its technology is described by x, <4x;. Each consumer
initially owns 5 units of good 3; that is, A =F= (0, 0, 5). Alice’s utility
fanction is uA(xl, Xy, x3) = 0.4In(x;) + 0.6In(x,), while Bob’s utility function is
uB(x, x5 x3) = 0.5In(x;) + 0.5In(x,).

What are the Walrasian equilibria of this economy? What would be the



equilibria if the shareholdings were reversed?

m 14.4. Redo Problem 14.3, where the only change is that, this time, A=f=
G, 5, 5).

m 14.5. Redo Problem 14. 3 but where the technology of the first firm is

described by T = 1/3 and the technology of the second firm is

-J.l
described by Ts ?.l ﬁ.- i X

m *14.6. In the proof of Proposition 14.8, I asserted (in the penultimate
paragraph of the proof) that if we pasted together the various _—]_;

correspondences to create A", then 4" is an upper semi-continuous, nonempty-
valued, and convex-valued correspondence. Provide the details to support this
assertion.

m 14.7. In the proof of Proposition 14.9, the constraint on the actions of
consumer # imposed by the actions of the other players (firms and the
auctioneer) was set as follows: Consumer /4 is constrained to choose an X' fom

that satisfies the farther constraint
- ;1_"1"" = p- ._qh' + E "fh"‘f{j)) Suppose we modified this,
to sa}; that consumerh must  satisfy the further  constraint
- = p- F EF ,gfhjl_] - _:-f, where 7/ is the production

plan chosen by firm f. If you try to redo the proof with this seemingly
innocuous change, you will run into substantial difficulties. What are they?

m *14.8. The proofs of Proposition 14.11 and 14.12 can be simplified or, at
least, changed, if we assume that we begin with an excess-demand function
instead of an excess-demand correspondence. In this problem, I point you in the
direction of a diferent proof of Proposition 14.11 for excess-demand functions;
Problem 14.9 will concern Proposition 14.12.

Suppose that { : P — RF is continuous and satisfies p - {(p) < 0 for all p. For



eachp € Pandi=1, ..., k let &(p): = max{p, {(p) + p;}, and let
(=8
&)
k A
Yo &
Prove that ¢ is a continuous function that maps P into itself Now apply

Brouwer’s Fixed-Point Theorem (see Appendix 8), and argue that ifp(p) = p,
then {(p) <0.

@(p) =

| *14.9. Let P° be the interior of the unit simplex, and suppose we have an
excess-demand function ¢ : P° — R¥ that is continuous, satisfies Walras’ Law
(p-dp)=0Dralp € P, is bounded below, and satisfies the boundary
condition: If {p”"} is a sequence of prices drawn from P’ with limit po that is not
strictly positive, then lim,, ||{(p")|| = .

Under these assumptions, construct a correspondence ¢ on the unit simplex of
prices P = {p € Rk 2 Y;p;=1}. Forp € P°, letop(p)={p' EP :p’;>0
only if (p) > {(p) forall j=1, ..., k}. And forp € P\ P, letp(p)={p' €EP
:p'i> 0 only ifp; = 0}. Think ofthis as follows: For p in the interior of P, ¢(p)
consists of all price vectors in P that assign positive prices to those goods that,
according to ((p), are in greatest excess demand. And for p on the boundary of
B ¢ (p) assigns positive prices to those goods that “in theory” would be in
infinite net demand, if we had defined " at the boundary. (The second of these
characterizations is a bit inaccurate, but it is in the rough spirit of the second
extra assumption.)

Show that ¢ is nonempty valued, convex valued, and upper semi-continuous.
Then apply Kakutani and prove that any fixed point of ¢ must be interior and

satisfy {(p) = 0.

m 14.10. One piece of the proof of Mas-Colell’s Theorem (Proposition 14.13) is
to generate, for a given closed set O < P, which is entirely interior to P, an



excess-demand function { that is continuous on the interior of P, that satisfies p
- {(p) = 0, and that is zero (only) on the set Q. (Mas-Colell’s extension of the
SM-D Theorem depends as well on this excess-demand function exploding in
norm for any sequence of prices that approach the boundary of P, but don’t
worry about that.) Fixing the set O, let d(p, Q) = mianQ |lp — 4ql|; because O

is closed, we know that the min here is appropriate and that p — d(p, Q) is a
continuous function of p. Let (} be any arbitrarily selected member of O, and let

e =it b T e TR Y
M D

It should be clear that, away ffom the boundary ofp, this function is continuous
in p. Prove that it satisfies p - {(p) = 0 for all p (Ethe interior of P) and that it
is zero at p if and only ifp € Q. (In the chapter, we said that an equilibrium
was any p such that {(p) <0. Why don’t we need to worry about the possibility
of {(p) < 0?)

m 14.11. Prove Proposition 14.14.

’ 1

! H and h are mnemonics for household. We don’t use I and i because we use
i for the typical commodity index; that is, we write i = 1, ...,k, and so forth.

2 The bibliographic notes at the end of the chapter give a cursory history, but
for now it is worth observing that Arrow and Debreu (1954) and McKenzie
(1954) are generally cited as the two papers that ignited this literature.

3 While the connection is a bit less direct, the results I give later, which
begin with an excess-demand correspondence, are more in the spirit of the
second seminal paper, McKenzie (1954).

4 The literature does extend to analyses where the commodity space is infinite
dimensional, but I won’t tackle any ofthat here.



5 The form given here is attributed by Debreu (1982) to Hildenbrand (1974).

© This proof was suggested to me by Phil Reny. Debreu’s chapter in the
Handbook provides a significantly more complicated proof albeit for a more
complex version of the result. This leads me to suspect that the proof I'm about
to give has a problem; if so, I don’t see it. And ifit doesn’t have a problem, it
is so natural following Debreu’s proof of the D-G-K-N Lemma that it probably
has been given elsewhere; if someone has a reference, I’d be grateful to be told of
1t.

7 This is not meant as a precise statement and, indeed, if one uses the
methods of monotone comparative statics, it is not only imprecise, but
somewhat incorrect.

8 Recall that Assumption 14.1 holds throughout this chapter, so this adds no
new assumptions.



Chapter Fifteen




General Equilibrium, Efficiency, and the Core

From the earliest days of academic economics (which is to say, fom the time of
Adam Smith), economists have written paeans of praise to competitive markets.
“The invisible hand of prices coordinates the activities of myriad producers and
consumers in an efficient manner, and moreover in a manner that, experience has
taught us, centrally planned and administered economies cannot match.” (Cue
background music with choirs of angels.) Indeed, taken a step or two further,
some versions of this hymn of praise to markets become hymns of praise to
greed, selfinterest, and the profit motive.

Behind the ideological bombast of these claims are serious models and
analyses that mix ideas about the incentive to innovate and the aggregation of
information by prices; models and analyses that, when done well, point out
serious limitations to the simple claim that “markets are good.” Incentives (to
innovate or otherwise) and information aggregation are topics well beyond the
framework of general equilibrium that was created last chapter, so this is not
something that we can seriously tackle at this point. But within the context of
general equilibrium, findamental results provide a starting point for assertions
that price equilibria are “good.” This chapter develops some of those
fundamental results.

In essence, this chapter presents four types of results:

e The First Theorem of Welfare Economics shows that, under seemingly
very mild conditions, the allocation portion of a Walrasian equilibrium is
Pareto efficient. Using the resources (endowments and production capacities)
provided in an equilibrium, no consumer can be made strictly better off than
she is in a Walrasian equilibrium without making some other consumer
worse off

* But, as we discussed in Chapter 8, to say that some mechanism (in this
case, the price mechanism) produces Pareto-efficient outcomes falls short of a
justification for the mechanism: It may produce a particular Pareto-efficient
outcome that is, at the same time, vastly inequitable. The Second Theorem
of Welfare Economics repairs this flaw in the fllowing sense: Under
somewhat more restrictive assumptions, and subject to a technical caveat, it
proves that any (feasible) Pareto-efficient allocation is the allocation portion



of a Walrasian equilibrium (sort of), if you are allowed to redistribute
endowments and shareholdings first.

e Pareto efficiency is one criterion of goodness of a social outcome, but
imagine a situation in which, relative to a given Walrasian-equilibrium
outcome, another fasible outcome (a) is better for some subset of all the
consumers in the economy and (b) can (somehow) be enforced by this
subset. Of course, for (a) to hold for an equilibrium outcome, which must be
Pareto efficient by the First Welfare Theorem, it must be that this alternative
outcome makes someone outside the subset worse off But ifthis subset has
the power to enforce this outcome, isn’t (a) still a valid objection to the
goodness of the original Walrasian equilibrium? This idea, suitably
formalized and generalized, leads to the game-theoretic notion of the core.
And the third result of this chapter shows that the hypothesized situation
cannot happen: Under mild conditions, every Walrasian equilibrium lies in
the core of the economy, meaning no subset of consumers has the power to
make its members better off than at the equilibrium outcome, although (of
course) this result is predicated on a particular specification of the power
possessed by each subset of consumers.

* And, very roughly, if a consumption allocation is in the core, then it is a
Walrasian equilibrium. At least, this is true if there is “enough”
competition in the economy. We formalize this result as a limiting result as
the number of consumers increases, in the Debreu-Scarf Theorem; and then
we discuss how it is obtained as an exact result for “large” economies
(economies with a continuum of agents).

All these results depend on the assumptions that markets are competitive
(consumers and firms take prices as given) and that there are no externalities.
The chapter ends with a discussion of externalities and a variant on Walrasian
equilibrium, Lindahl equilibrium, which in theory if not in practice “solves”
the problem of externalities.

15.1. The First Theorem of Welfare Economics

We continue in this chapter to adhere to Assumption 14.1. For the sake of
completeness, here it is again (renumbered):



Assumption 15.1. Each consumers commodity space X" s Rk Each

consumer’s utility function u" is continuous. Each firm§ production-possibility
set Z'is closed and nonempty.

For an economy &, recall fom Definition 14.3 that X" is the set of Rasible
allocations for the economy:

H
W i i Jl'l e JL|- A
. .ch. <y et f forsomeze Z

h=1 h=1

r F T
where & — i JT{’I and 7 = H_f:l Ef Also define
X' = :I.‘ERFC:JEEZ(-‘h-l-szfDl‘SOlllE’zEZ

Or, in words, X" consists of all bundles of goods that are less than or equal to
bundles that the economy is capable of producing (including the initial
endowments). Of course, ifx € X", then > ¥ € X". But note carefully; x €
X" means that each ¥ € Xh; that is, each W is nonnegative. In defining X*, we
allow “bundles” of goods with negative components. (See Problem 15.1 for
more on this point.)

Proposition 15.2 (The First Theorem of Welfare Economics). Suppose (p, x,
2) is a Walrasian equilibrium for an economy with locally insatiable
consumers, such that p >0. Then x is Pareto efficient within X g

Proof Let (p X, z) be the Walrasian equilibrium in question, and let
} Eh. pex .k That is, Y is the value at the equilibrium prices of

the summed-up equlllbnum consumption bundles of the consumers in the



economy.
The proof consists of showing that the hyperplane {x € Rk p-x =Y}
separates (in a strict sense) bundles of goods that the economy is capable of
producing ffom bundles of goods that can be distributed to the consumers in a
fashion that is Pareto superior to x.
We have, first ofall, that

p-r<Yforallze X*. (15.1)

To see why this is true, note first that by local insatiability, each consumer
spends all of her endowment, orp - % =p- &+ Zf sfhp > Summing this
over . ; all &, A ; we . getf
7 £

= = = ! ' = P = T
Y=y, pat=),pe+), ) s"pal=), pe+) px

where the last equation ©llows ffom the fact that the sum of the shares in each
firm totals 1. But for any JeZ P szp - oI, because ' is profit maximizing
at the prices p. Hence, for any & € Z,

1’:23}-6h+233-zfT-_*Zg}-@h+233-£f.
h i k T

Now takex € X" we have P < zh -F‘h' i Ef £-F for some &

€ Z. Since prices p are assumed to be nonnegative, we can dot this inequality
by the prices p and, combining with the previous display, we have

p-:r:-’_-;Zp-e"'+Zp-£f5}”.
k f

which is (15.1).
Fixing x, the equilibrium allocation, let



PS(x) = {& € R*™ : & is Pareto superior to x};

here PS is an obvious mnenomic for “Pareto superior.” And let
7 3 ~ Dk . ah A
PS(x)=qx e R :2=Y & forsomei = PS(x)

Or, in words, PS(x) is the set of bundles of goods that can be parceled out to the
consumers in a manner that is Pareto superior tox. The point of these
definitions is that

p-x =Y forall x € PS(a). (15.2)

This is a consequence of two consumer-by-consumer inequalities: For _I: €

RE

If & =" .1"". thenp-z = p- A, and
if # =" af, thenp -2 > p-a®
For the second of these, suppose _I: _E:—h ¥ Since ¥ is optimal for consumer 4
facing prices p, it must be that _E is unafiordable for 4 at these prices. But since
(we assume) consumers are locally insatiable, ¥ must exhaust A’s budget at
prices p; hence .E! must cost strictly more than " at prices p. And for the first,
even 1fi‘: ~h ifp - .,E <p- ¥, then local insatiability implies that / can
purchase some bundle near to (but strictly better than) . I for less than p - o,
which would contradict the optimality for / of ¥ at prices p.
But with these two consumer -by-consumer inequalities, we have (15.2): If

T € PS(), then 1.=3, & " for some T € PS(). For this 1., ;Eh :;__h o for



all 4, and ;J"th :1—h ¥ for at least one k. Hence, by the two consumer-by-

consumer inequalities,

Z p-i® > Z p-at,
h h

Pulling the p outside the sum on the lefi-hand side gives p - ;}‘!, while the right-
hand side is Y.

And, with (15.1) and (15.2) in hand, we conclude that x must be Pareto
efficient. For if it were not, there would be some feasible allocation j. that

Pareto dominates it. To be feasible, the bundle of goods that allows the
allocation j‘,. must have value (under prices p) no greater than Y. But to be

Pareto superior to x, the same bundle must have value (again, under prices p)

strictly exceeding Y. The two are incompatible. -

It is worth emphasizing that the assumptions in the First Theorem—
equilibrium prices must be nonnegative and consumers must be locally
insatiable—are pretty minimal. Minimal or not, you might wonder whether we
need them. We used p > 0 in one place, where we said that ifx € X", the
physical feasiblity ofx, which is the inequality x <3, &+ Zf :i__‘f for some array

of production plans &, can be turned into a value inequality. That is, we can

“dot” both sides of the physical feasiblity inequality and get a value inequality
running in the same direction. A negative price might reverse the inequality.
But if we had fiom the start defined physical feasibility with an equality—ii
dumpsters are not freely available—then we wouldn’t need to assume that p > 0
at this (or any other) step.

Local insatiability, on the other hand, is absolutely at the heart of the First
Theorem. If consumers are not (all) locally insatiable, Walrasian-equilibrium
allocations can be Pareto inefficient. Roughly put, a consumer who has a local
bliss point (a point that, locally, maximizes her preferences) can, at an
equilibrium, waste resources that other consumers would like to have but cannot
afford. For more on this, see Problem 15.2.



15.2. The Second Theorem of Welfare Economics

The proofjust given for the First Theorem of Welfare Economics is written in a
way that emphasizes its internal logic: If (p, x, z) is a Walrasian equilibrium
with p > 0 and with locally insatiable consumers, then the price vector p and
scalar Y =p - (3, )/’) form a hyperplane that separates technologically feasible

bundles of goods ffom bundles that can be allocated to consumers in a manner
that is Pareto superior to x. Hence, what is feasible cannot be Pareto superior to
X.

This suggests a possible converse. Suppose x is a Pareto-efficient allocation
within some economy. By definition, this says that the set of bundles that can
be allocated in a manner Pareto superior to x are disjoint ffom the set of bundles
that are feasible for this economy. Suppose we use the Separating-Hyperplane
Theorem to find a price vector that separates these two sets; that is, that
separates X" fom PS(x). Perhaps this separating price vector is, in some sense, a
vector of equilibrium prices.

Roughly speaking, this is the line of argument in the Second Theorem of
Welfare Economics. But there are two—shall we say?—snags in getting this to
work. First—and not really a snag but instead a technical requirement—is that
to employ the Separating-Hyperplane Theorem, we will need to know that the
sets being separated are convex. We’ll need assumptions on the firm’s
production-possibility sets 7 to ensure that X" is convex and on consumer
preferences to ensure that PS(x) is convex. And—this time a real snag—in the
First Theorem, we got semi-strict separation between the two sets; we had a <
inequality on one side and a > inequality on the other Unless we can call upon
the Strict-Separation Theorem—and if you think about it, we cannot; PS(x) is
not closed, and neither set is likely to be compact—we will get two weak
inequalities. Because of this, the Second Theorem deals not with Walrasian
equilibria but with something slightly weaker:

Definition 15.3. 4 Walrasian quasi-equilibrium for an economy ¢ is a triple
(, x, z) such that p # 0, where

a. 7 maximizes pzoverz € Z/ for each f,

b. p-¥<p- eh+zfsfh



c Iij’ € X' is such that X" }—h o then p - % >p- &+ zf‘v/‘hp - and
d <y, d+3

Comparing this with the definition of a Walrasian equilibrium, the difference
comes in the consumer-maximization part of the definition. In a Walrasian
equilibrium, the consumer maximizes her utility at the allocation, given prices
and her wealth, where it is implicit in the consumer-maximization part of the
definition that the equilibrium allocation is budget feasible for each consumer.
Here, budget feasibility is explicit (part b), but in place of optimality of the
equilibrium allocation, we have the slightly weaker condition c¢. How much
weaker?

Proposition 15.4. If (p, x, z) is a Walrasian equilibrum for economy ¢, then it
is a Walrasian quasi-equilibrium. Conversely, if (p, x, z) is a Walrasian

uasi-equilibrium for ¢ and i eh Fhg. of - or
quasi-eq fi [P kY 8 Pl >0 S
consumer h, then for this consumer, if X" _E:—h A then
- ;rh‘ =P ._qh' + E_F ,gfh;f_] . z-iF. Or, put the other way
around, for this consumer h, xh maximizes her preferences over her budget set.
So if each consumerk net wealth at the prices p is strictly positive, the quasi-
equilibrium is a Walrasian equilibrium.

Proof. If (p, x, z) is a Walrasian equilibrium for ¢, then parts a, b, and d of
Definition 15.3 are immediate. And if ¥ € X" satisfies ¥ j::-h ', then (so that
s optimal) it must be that ¥ is not budget feasible, or
- ;r:j" >p- t_::h' 4 Ef thp . zf . So part ¢ of the definition
holds with a strict inequality.

Conversely, suppose (p, x, z) is a Walrasian quasi-equilibrium for ¢ and, for

consumerh i p . (_:“-h —+ Zf I_qfhil_] . Zf = l:l Suppose that x
€ Rk is such that x b o and
p-x = P .:ﬁh - Z_,f ,.;fhp . J-_,JF. Part ¢ of the definition



then tells us that p-x=p-: f_’--h + E_;F quh'p f Z‘f =
Since preferences are continuous, for some a strictly less than (but, presumably,
close to) 1, ox _‘_-;—h o, butp - (wx) < p - x (since
p LIk e D} =p- rj-f‘h + Zf :."fhp . zf, which contradicts part

the definition. Hence if

c of
p-ef+3 s p.2f > 0 and o =P &P it mustee
that p . 0 == p - el ofhy . of
APT > PE +Ef_a Pz
Therefore, ifp - '+ Zfs/hp >0 for all b, every consumer maximizes

her preference over her budget set with the bundle A" The physical-feasibility
condition of a Walrasian equilibrium is precisely d in Definition 15.3, and the
firmprofit-maximization condition is a, so this is indeed a Walrasian
equilibrium.

|

In other treatments of these ideas, you may find condition b of the definition
of a quasi-equilibrium omitted. This omission has the ©llowing explanation.
Proposition 15.5. Suppose all consumers are locally insatiable.

a. If condition c in the definition of a 